-
Graphene has become one of the most exciting topics of nano-material research in recent years because of its unique thermal properties. Nitrogen doping and vacancy defects are utilized to modify the characteristics of graphene in order to understand and control the heat transfer process of graphene. We use nonequilibrium molecular dynamics to calculate the thermal conductivity of armchair graphenenanoribbon affected by nitrogen doping concentration and nitrogen doping location, and analyze theoretically the cause of the change of thermal conductivity. The research shows that the thermal conductivity drops sharply when graphenenanoribbon is doped by nitrogen. When nitrogen doping concentration is up to 30%, the thermal conductivity drops by 75.8%. When the location of nitrogen doping moves from the cold bath to the thermal bath, the thermal conductivity first decreases and then increases. And it is also found that the structure of triangular single-nitrogen-doped graphenenanoribbon is inhibited more strongly in the heat transfer process than that of parallel various-nitrogen-doped graphenenanoribbon. Vacancy defects reduce the thermal conductivity of graphenenanoribbon. When the location of vacancy moves from the cold bath to thermal bath, the thermal conductivity first decreases and then increases. When the vacancy position is located at 3/10 of the entire length relative to the edge of the cold bath, the thermal conductivity reaches a minimum value. This is because of the phonon velocity and phonon mean free path varying with the concentration and the location of nitrogen doping and the location of vacancy defect. These results are useful to control the heat transfer process of nanoscalegraphene and provide theoretical support for the synthesis of new materials.
-
Keywords:
- graphenenanoribbons /
- nitrogen doping /
- vacancy /
- thermal conductivity
[1] Novoselov K S, Geim A K 2004 Science 306 666
[2] [3] Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911
[4] Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[5] [6] [7] Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103
[8] [9] Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107
[10] [11] Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491
[12] [13] Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082
[14] Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705
[15] [16] Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730
[17] [18] [19] Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705
[20] [21] Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783
[22] [23] Tersoff J 1989 Phys. Rew. B 39 5566
[24] [25] Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48
[26] Shi L P, Xiong S J 2009 Phys. Lett. A 373 563
[27] [28] [29] Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413
[30] Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107
[31] [32] Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752
[33] [34] Xinran W 2009 Science 324 768
[35] [36] [37] Ying W, Yuyan S 2010 ACS Nano 4 1790
[38] [39] Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301
[40] [41] Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963
[42] Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963
[43] [44] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[45] [46] [47] Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885
[48] [49] Chang C W, Okawa D 2006 Science 314 1121
[50] [51] Gang Wu 2007 Phys. Rew. B 76 085424
[52] Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301
[53] [54] [55] Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211
-
[1] Novoselov K S, Geim A K 2004 Science 306 666
[2] [3] Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911
[4] Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[5] [6] [7] Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103
[8] [9] Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107
[10] [11] Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491
[12] [13] Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082
[14] Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705
[15] [16] Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730
[17] [18] [19] Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705
[20] [21] Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783
[22] [23] Tersoff J 1989 Phys. Rew. B 39 5566
[24] [25] Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48
[26] Shi L P, Xiong S J 2009 Phys. Lett. A 373 563
[27] [28] [29] Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413
[30] Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107
[31] [32] Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752
[33] [34] Xinran W 2009 Science 324 768
[35] [36] [37] Ying W, Yuyan S 2010 ACS Nano 4 1790
[38] [39] Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301
[40] [41] Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963
[42] Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963
[43] [44] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[45] [46] [47] Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885
[48] [49] Chang C W, Okawa D 2006 Science 314 1121
[50] [51] Gang Wu 2007 Phys. Rew. B 76 085424
[52] Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301
[53] [54] [55] Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211
Catalog
Metrics
- Abstract views: 10122
- PDF Downloads: 1393
- Cited By: 0