-
利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义.By using the first-principles method and the density-functional theory, the electronic properties of graphene nanoribbons(GNRs) with periodic nanoholes passivated by oxygen are studied. It is shown that for the zigzag graphene nanoribbon (ZGNR) in nonmagnetic state(NM), the metallic properties not only still remain but also are obviously enhanced after the holes are punched. But for the antiferromagnetic-state (AFM) ZGNR, after punching holes, it would be changed from semiconductor to metal. While for the ferromagnetic-state (FM) ZGNR, it can be transformed from metal to semiconductor or semimetal after punching holes. Besides, for the punched armchair graphene nanoribbon (AGNR), its band gap will be significantly widened. The in-depth analysis shows that these results are due to the effects of oxygen atoms on electronic properties of GNRs, and also due to the different quantum confinement effects from the neck subprime nanoribbon (NSNR) and edge subprime nanoribbon (ESNR) with different width and edge shape(zigzag or armchair). These findings are important for developing nano electronic devices.
-
Keywords:
- graphene nanoribbon /
- periodic nanoholes /
- inner-edge oxygen passivation /
- electronic properties
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[3] Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418
[4] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[5] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008
[6] Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]
[7] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156 ]
[8] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[9] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107
[10] OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[11] Topsakal M, Aktrk E, Sevin çli H, Ciraci S 2008 Phys. Rev. B 78 235435
[12] Youngki Y, Fiori G, Seokmin H, Iannaccone G 2008 IEEE Transactions on 55 2314
[13] Peres N M R, Klironomo F D, Tsai S W, Santos J R, Lopes J M B, Castro A H 2007 Eur. Phys. Lett. 80 67007
[14] Ouyang F P, Peng S L, Liu Z F, Liu Z R 2011 ACS Nano 5 4023
[15] Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405
[16] Geunisk L, Kyeongjae Cho 2009 Phys. Rev. B 79 165440
[17] Taylor J, Guo H, wang J 2001 Phys. Rev. B 63 245407
[18] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[19] He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305
[20] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
[21] Oswald W, Wu Z 2012 Phys. Rev. B 85 115431
[22] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y 2009 Nano Lett. 9 220
[23] Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810
[24] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[25] Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205
[26] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
[27] Areshkin D A, White C T 2007 Nano Lett. 7 3253
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[3] Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418
[4] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[5] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008
[6] Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]
[7] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156 ]
[8] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[9] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107
[10] OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[11] Topsakal M, Aktrk E, Sevin çli H, Ciraci S 2008 Phys. Rev. B 78 235435
[12] Youngki Y, Fiori G, Seokmin H, Iannaccone G 2008 IEEE Transactions on 55 2314
[13] Peres N M R, Klironomo F D, Tsai S W, Santos J R, Lopes J M B, Castro A H 2007 Eur. Phys. Lett. 80 67007
[14] Ouyang F P, Peng S L, Liu Z F, Liu Z R 2011 ACS Nano 5 4023
[15] Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405
[16] Geunisk L, Kyeongjae Cho 2009 Phys. Rev. B 79 165440
[17] Taylor J, Guo H, wang J 2001 Phys. Rev. B 63 245407
[18] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[19] He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305
[20] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
[21] Oswald W, Wu Z 2012 Phys. Rev. B 85 115431
[22] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y 2009 Nano Lett. 9 220
[23] Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810
[24] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[25] Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205
[26] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
[27] Areshkin D A, White C T 2007 Nano Lett. 7 3253
计量
- 文章访问数: 6040
- PDF下载量: 736
- 被引次数: 0