Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster

Zhao Jie Tang De-Li Xu Li Li Ping-Chuan Zhang Fan Li Jian Gui Bing-Yi

Citation:

Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster

Zhao Jie, Tang De-Li, Xu Li, Li Ping-Chuan, Zhang Fan, Li Jian, Gui Bing-Yi
PDF
HTML
Get Citation
  • For anode layer Hall plasma thruster, the etching of inner magnetic pole is one of the key factors affecting its service life. In order to solve the problem of inner magnetic pole etching in anode layer Hall plasma thruster, the effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster is studied by combining particle simulation PIC with sputtering simulation. The magnetic shielding of anode changes the distribution of magnetic field configuration on the surface of the anode, and improves the magnetic mirror ratio of the magnetic mirror field of the thruster to the magnetic field width of the positive gradient on the central axis. The ratio of the magnetic mirror is 1.4 times that of the original one, and two additional saddle magnetic fields are added on both sides of the original saddle magnetic field region. It not only is conducive to confining electrons and improving the ionization rate of working gas, but also keeps a certain distance between the anode and the high temperature electron region, which provides the reliable reference data for the design of high power Hall plasma thruster. When the discharge voltage is 900 V and the working pressure is 2 × 10–2 Pa, the simulation results show that after the anode is shielded by the magnetic shield, the energy range of most of the incident ions on the inner magnetic pole is 40–260 eV, which is 100 eV lower than the energy range 40–360 eV in the case without shielding the anode. The probability distribution of particle energy without magnetically shielding the anode between 260 eV and 600 eV is obviously higher than that of ion energy with magnetically shielding the anode. The maximum probability distribution of cosine value of incident angle is extended from a small range near 0.1 (incident angle 84°) to a large range of 0.1–0.45 (incident angle 84°–63°). The magnetic shielding makes the incident ions disperse on the surface of the inner magnetic pole, which is helpful in reducing the etching of inner magnetic pole. The maximum etching rate of inner magnetic pole after the anode has been magnetically shielded is reduced from 16 × 10–10 m/s to 6.1 × 10–10 m/s, which is 2.62 times lower. The comparison of simulation results with experimental results in the case without magnetically shielding the anode shows that they are in good agreement.
      Corresponding author: Zhao Jie, zhaojie585@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775073) and the Sichuan Provincial Foundation for Program of Science and Technology, China (Grant No. 2019YJ0705).
    [1]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R15Google Scholar

    [3]

    Manzella D, Jankosvsky R S, Hofer R R 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3676

    [4]

    Robert S J, David T J, Charles J S 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3675

    [5]

    Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeut J P 2003 Phys. Plasmas 10 4886Google Scholar

    [6]

    Cao H J, Li Q G, Shan K,Cao Y, Zheng L 2015 IEEE Trans. Plasma Sci. 43 130Google Scholar

    [7]

    于达仁, 张凤奎, 李鸿, 刘辉 2009 58 1844Google Scholar

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844Google Scholar

    [8]

    Ross J L, Sommerville J D, King L B 2010 J. Propul. Power 26 1312Google Scholar

    [9]

    赵杰, 唐德礼, 耿少飞 2009 宇航学报 30 690Google Scholar

    Zhao J, Tang D L, Geng S F 2009 J. Astronautics 30 690Google Scholar

    [10]

    Garner C E, Brophy J R 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 AIAA-94-3010

    [11]

    Kristi de G, Jack F, Fred W, Brian B, John D 2004 40th Joint Propulsion Conference and Exhibit Fort Lauderdate, Florida, July 11–14, 2024 AIAA-2004-3603

    [12]

    Welander B, Carpenter C, Kristi D G 2006 42th Joint Propulsion Conference and Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5263

    [13]

    Richard R H, Mikellides I G, Katz I, Goebel D M 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC Paper 2007–267

    [14]

    Sommier E, Allis M K, Cappelli M A 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p189

    [15]

    John T Y, Michael K 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p13

    [16]

    李宏斌, 唐德礼, 聂军伟 2015 核聚变与等离子体物理 35 181Google Scholar

    Li H B, Tang D L, Nie J W 2015 Nuclear Fusion & Plasma Phys. 35 181Google Scholar

    [17]

    张帆, 唐德礼, 聂军伟, 李平川 2016 推进技术 37 386

    Zhang F, Tang D L, Nie J W 2016 J. Propulsion Technol. 37 386

    [18]

    Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305Google Scholar

    [19]

    Zhao J, Tang D L, Geng S F, Wang S Q, Liu J, Xv L 2010 Plasma Sci. Technol. 12 109Google Scholar

    [20]

    赵杰, 唐德礼, 李平川, 耿少飞 2018 真空科学与技术学报 38 708

    Zhao J, Tang D L, Li P C 2018 Chin. J. Vacuum Sci. Technol. 38 708

    [21]

    周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088

  • 图 1  阳极层霍尔推力器结构示意图(1, 外磁极; 2, 阳极; 3, 内屏蔽筒; 4, 磁钢; 5, 阳极磁屏蔽; 6, 外屏蔽筒; 7, 内磁极)

    Figure 1.  Cross-sectional schematic diagram of the anode layer Hall thruster (1, outer magnetic pole; 2, anode; 3, inner shield; 4, permanent magnet; 5, anode magnetic shield; 6, outer shield; 7, inner magnetic pole).

    图 2  磁场线 (a) 无阳极磁屏蔽; (b) 有阳极磁屏蔽

    Figure 2.  Magnetic field lines: (a) Without anode magnetic shield; (b) with anode magnetic shield.

    图 3  仿真流程

    Figure 3.  Simulation process.

    图 4  离子轨迹

    Figure 4.  Ion trajectory.

    图 5  入射离子能量的概率分布

    Figure 5.  Probability distribution of the incident ion energy.

    图 6  入射角余弦值的概率分布

    Figure 6.  Probability distribution of the cosine of the incident angle.

    图 7  内磁极上表面刻蚀速率分布

    Figure 7.  Distribution of etching rate on upper surface of inner magnetic pole.

    图 8  内磁极内表面刻蚀速率分布

    Figure 8.  Distribution of etching rate on inner surface of inner magnetic pole.

    图 9  实验后的内磁极刻蚀形貌图

    Figure 9.  Photos of the inner magnetic pole after experiment.

    Baidu
  • [1]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R15Google Scholar

    [3]

    Manzella D, Jankosvsky R S, Hofer R R 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3676

    [4]

    Robert S J, David T J, Charles J S 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3675

    [5]

    Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeut J P 2003 Phys. Plasmas 10 4886Google Scholar

    [6]

    Cao H J, Li Q G, Shan K,Cao Y, Zheng L 2015 IEEE Trans. Plasma Sci. 43 130Google Scholar

    [7]

    于达仁, 张凤奎, 李鸿, 刘辉 2009 58 1844Google Scholar

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844Google Scholar

    [8]

    Ross J L, Sommerville J D, King L B 2010 J. Propul. Power 26 1312Google Scholar

    [9]

    赵杰, 唐德礼, 耿少飞 2009 宇航学报 30 690Google Scholar

    Zhao J, Tang D L, Geng S F 2009 J. Astronautics 30 690Google Scholar

    [10]

    Garner C E, Brophy J R 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 AIAA-94-3010

    [11]

    Kristi de G, Jack F, Fred W, Brian B, John D 2004 40th Joint Propulsion Conference and Exhibit Fort Lauderdate, Florida, July 11–14, 2024 AIAA-2004-3603

    [12]

    Welander B, Carpenter C, Kristi D G 2006 42th Joint Propulsion Conference and Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5263

    [13]

    Richard R H, Mikellides I G, Katz I, Goebel D M 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC Paper 2007–267

    [14]

    Sommier E, Allis M K, Cappelli M A 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p189

    [15]

    John T Y, Michael K 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p13

    [16]

    李宏斌, 唐德礼, 聂军伟 2015 核聚变与等离子体物理 35 181Google Scholar

    Li H B, Tang D L, Nie J W 2015 Nuclear Fusion & Plasma Phys. 35 181Google Scholar

    [17]

    张帆, 唐德礼, 聂军伟, 李平川 2016 推进技术 37 386

    Zhang F, Tang D L, Nie J W 2016 J. Propulsion Technol. 37 386

    [18]

    Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305Google Scholar

    [19]

    Zhao J, Tang D L, Geng S F, Wang S Q, Liu J, Xv L 2010 Plasma Sci. Technol. 12 109Google Scholar

    [20]

    赵杰, 唐德礼, 李平川, 耿少飞 2018 真空科学与技术学报 38 708

    Zhao J, Tang D L, Li P C 2018 Chin. J. Vacuum Sci. Technol. 38 708

    [21]

    周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088

  • [1] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [3] Bai Sheng-Bo, Chen Zhi-Hua, Zhang Huan-Hao, Chen Gao-Jie, Cao Shi-Cheng, Zhang Sheng-Bo. Rate optimization of atomic layer etching process of silicon. Acta Physica Sinica, 2023, 72(21): 215214. doi: 10.7498/aps.72.20231022
    [4] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Influence of acceleration grid voltage and anode flow rate on performance of ion thruster. Acta Physica Sinica, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [5] Peng Xiang-Kai, Ji Jing-Wei, Li Lin, Ren Wei, Xiang Jing-Feng, Liu Kang-Kang, Cheng He-Nan, Zhang Zhen, Qu Qiu-Zhi, Li Tang, Liu Liang, Lü De-Sheng. Online learning method based on artificial neural network to optimize magnetic shielding characteristic parameters. Acta Physica Sinica, 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [6] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [7] Feng Gao-Ping, Sun Yu, Zheng Xin, Hu Shui-Ming. Design and measurement of a magnetic field for precision spectroscopy of helium. Acta Physica Sinica, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [8] Gao Yang-Fu, Sun Xiao-Min, Song Yi-Xu, Ruan Cong. An optimization method for ion etching yield modeling combined with factual etching data. Acta Physica Sinica, 2014, 63(24): 248201. doi: 10.7498/aps.63.248201
    [9] Gao Yang-Fu, Song Yi-Xu, Sun Xiao-Min. An optimization method for ion etching yield modeling based on etching velocity matching. Acta Physica Sinica, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [10] Xu Xiang-Dong, Liu Ying, Qiu Ke-Qiang, Liu Zheng-Kun, Hong Yi-Lin, Fu Shao-Jun. Ion beam etching for multilayer dielectric pulse compressor gratings with top layers of HfO2. Acta Physica Sinica, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [11] Duan Ping, Cao An-Ning, Shen Hong-Juan, Zhou Xin-Wei, Qin Hai-Juan, Liu Jin-Yuan, Qing Shao-Wei. Effect of electron temperature on the characteristics of plasma sheath in Hall thruster. Acta Physica Sinica, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [12] Han Ke, Jiang Bin-Hao, Ji Yan-Chao. Study on the mechanism of Hall effect thruster discharge with bistable state. Acta Physica Sinica, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [13] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [14] Geng Shao-Fei, Tang De-Li, Qiu Xiao-Ming, Nie Jun-Wei, Yu Yi-Jun. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator. Acta Physica Sinica, 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [15] Cao Ming-Tao, Qiu Shu-Wei, Guo Wen-Ge, Liu Tao, Han Liang, Liu Hao, Zhang Pei, Zhang Shou-Gang, Gao Hong, Li Fu-Li. Optical polarization rotation in a rubidium vapor. Acta Physica Sinica, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [16] Deng Li-Yun, Lan Hong-Mei, Liu Yue. Numerical study on Hall thruster magnetic configuration and its optimization. Acta Physica Sinica, 2011, 60(2): 025213. doi: 10.7498/aps.60.025213
    [17] Qing Shao-Wei, Ding Yong-Jie, Duan Ping, Wang Xiao-Gang, Yu Da-Ren. Effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thrusters. Acta Physica Sinica, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [18] Geng Shao-Fei, Tang De-Li, Zhao Jie, Qiu Xiao-Ming. Particle-in-cell simulation of a cylindrical Hall anode layer plasma accelerator. Acta Physica Sinica, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [19] Liu Men-Quan, Zhang Jie, Luo Zhi-Quan. Effect of electron screening on the prompt explosion energy for type Ⅱ supernova. Acta Physica Sinica, 2006, 55(6): 3197-3201. doi: 10.7498/aps.55.3197
    [20] Wang Sen, Yu Guo-Jun, Gong Jin-Long, Li Qin-Tao, Zhu De-Zhang, Zhu Zhi-Yuan. Etching effects of low energy argon ion beam on porous anodic aluminum oxide membranes. Acta Physica Sinica, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
Metrics
  • Abstract views:  7627
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2019
  • Accepted Date:  07 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回
Baidu
map