Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of interface irradiation damage in Ti-clad V-4Cr-4Ti composite material

Li Ran-Ran Zhang Yi-Fan Geng Dian-Cheng Zhang Gao-Wei Watanabe Hideo Han Wen-Tuo Wan Fa-Rong

Citation:

Characterization of interface irradiation damage in Ti-clad V-4Cr-4Ti composite material

Li Ran-Ran, Zhang Yi-Fan, Geng Dian-Cheng, Zhang Gao-Wei, Watanabe Hideo, Han Wen-Tuo, Wan Fa-Rong
PDF
HTML
Get Citation
  • The development of electrically insulating coatings is extremely important for the lithium/vanadium (Li/V) blanket of the fusion reactor. However, Li/V cladding materials suffer many problems such as tritiumpermeation and material corrosion. Thus, it is very important to find suitable insulating, tritium-resistant and corrosion-resistant coatings. So, the " V-alloy/Ti/AlN” bilayer coating was proposed by our group in previous study for the first time. In this paper, the evolution of the hardness, irradiation defects and microstructure of the Ti-clad V-4Cr-4Ti composite material after Fe10+ implantation are studied by transmission electron microscopy (TEM) and nanoindentation. According to the characteristics of the composition and microstructure, V-4Cr-4Ti/Ti composite material can be divided into four zones: V-4Cr-4Ti matrix, interface I (the interface near V-4Cr-4Ti matrix), interface II (the interface near Ti matrix), and Ti matrix. The nanoindentation results show that radiation hardening occurs in all regions during irradiation. The radiation hardening in the interface is lower than in the V-4Cr-4Ti and Ti matrix. Thus, the interface of heterogeneous material exhibits fine resistance to radiation hardening. The experimental values of hardness are much higher than the values calculated by the dispersed barrier hardening model. One reason for the discrepancy is that the theoretical values are calculated under the hypothesis of the uniform loop distribution. Actually, a large number of dislocation loops accumulate and tangle with each other in the samples. In addition, the formation of the precipitates is also one of the key factors. The TEM results show that the irradiation defects in the interface are low in density, large in size, and uniform in distribution. As a contrast, high density, small size and twisted dislocation loops are observed in irradiated V-4Cr-4Ti and Ti matrix. These results indicate that the interface can play a critical role in the resistance to irradiation damage. Few tiny Ti-rich precipitates appear in the V-4Cr-4Ti matrix, while there are large quantities of Ti precipitates in the interface after irradiation. Moreover, the number and size of precipitates in the interface I are larger than those in the interface II due to the formation of a few V-rich precipitates in the interface I. The formation of precipitations changes the proportion of V/Ti, which leads to the transformation from β-Ti to α-Ti in the interface.
      Corresponding author: Wan Fa-Rong, wanfr@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071021, 51471026) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB120000).
    [1]

    张高伟, 韩文妥, 崔丽娟, 万发荣 2018 稀有金属材料与工程 5 1537

    Zhang G W, Han W T, Cui L J, Wan F R 2018 Rare Metal Mat. Eng. 5 1537

    [2]

    Zhang G W, Han W T, Yi X O, Wan F R 2018 Appl. Sci. 8 577Google Scholar

    [3]

    Gohar Y, Majumdar S, Smith D L 2000 Fusion Eng. Des. 49 551

    [4]

    Smith D L, Billone M C, Natesan K 2000 Int. J. Refract. Met. H 18 213Google Scholar

    [5]

    Jones R H, Heinisch H L, McCarthy K A 1999 J. Nucl. Mater. 271 518

    [6]

    Kirillov I R, Danilov I V, Sidorenkov S I, Strebkov Y S, Mattas R F, Gohar Y, Hua T Q, Smith D L 1998 Fusion Eng. Des. 39 669

    [7]

    Mattas R F, Smith D L, Reed C D, Parka J H, Kirillov I R, Strebkov Y S, Rusanov A E, Votinov S N 1998 Fusion Eng. Des. 39 659

    [8]

    Muroga T 2005 Mater. Trans. 46 405Google Scholar

    [9]

    Malang S, Bühler L 1994 MHD Pressure Drop in Ducts with Imperfectly Insulating Coatings (Chicago: Argonne National Laboratory Report) Report No. ANL/FPP/TM-269

    [10]

    Vertkov A V, Evtikhin V A, Lyublinski I E 2001 Fusion Eng. Des. 58 731

    [11]

    Smith D L, Konys J, Muroga T, Evitkhin V 2002 J. Nucl. Mater. 307 1314

    [12]

    Muroga T, Pint B A 2010 Fusion Eng. Des. 85 1301Google Scholar

    [13]

    Wang J, Li Q, Xiang Q Y, Cao J L 2016 Fusion Eng. Des. 102 94Google Scholar

    [14]

    Suzuki A, Muroga T, Pint B A, Yoneoka T, Tanaka S 2003 Fusion Eng. Des. 69 397Google Scholar

    [15]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307 1344

    [16]

    Pint B A, Tortorelli P F, JankowskiA, Hayes J, Muroga T, Suzuki A, Yeliseyeva O I, Chernov V M 2004 J. Nucl. Mater. 329 119

    [17]

    Jiří M, Pavel C 2010 Adv. Sci. Technol. 66 19

    [18]

    Vitkovsky I V, Gorunov A V, Kirillov I R, Khoroshikh V M, Kraev V D, Ogorodnikov A P, Petrovsky V Y, Rusanov A E 2002 Fusion Eng. Des. 61 739

    [19]

    Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102Google Scholar

    [20]

    Kolluri K, Demkowicz M J 2012 Phys. Rev. B 85 205416Google Scholar

    [21]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Meth. B 310 75Google Scholar

    [22]

    ASTM Committee E521–96 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation (vol.12.02) (West Conshohocken: Copyright © ASTM International) p8

    [23]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第143页

    Wan F R 1993 Irradiation Damage of Metal Materials (Vol. 1) (Beijing: Science Press) p143 (in Chinese)

    [24]

    Fu E G, Carter J, Swadener G, Misra A, Shao L, Wang H, Zhang X 2009 J. Nucl. Mater. 385 629Google Scholar

    [25]

    Watanabe H, Nagamine M, Yamasaki K, Yoshida N, Heo N J, Nagasaka T, Muroga T 2005 Mater. Sci. Forum 475 1491

    [26]

    Heo N J, Nagasaka T, Muroga T, Nishimura A, Shinozaki K, Watanabe H 2003 Fusion Sci. Technol. 44 470Google Scholar

    [27]

    Han W Z, Demkowicz M J, Fu E G, Wang Y Q, Misra A 2012 Acta Mater. 60 6341Google Scholar

    [28]

    Zhang Y F, Zhan Q, Ohnuki S, Kimura A, Wan F R, Yoshida K, Nagai Y 2019 J. Nucl. Mater. 517 1Google Scholar

    [29]

    Bergner F, Pareige C, Hernández-Mayoral M, Malerba L, Heintze C 2014 J. Nucl. Mater. 448 96Google Scholar

    [30]

    张高伟 2018 博士学位论文 (北京: 北京科技大学)

    Zhang G W 2018 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

  • 图 1  由SRIM软件计算得到的V-4Cr-4Ti和Ti的辐照损伤随样品深度的变化

    Figure 1.  Irradiation damage (dpa) in V-4Cr-4Ti/Ti samples calculated by SRIM2008 software.

    图 2  V-4Cr-4Ti/Ti界面区域及两侧基体在(a) 辐照前和 (b) 辐照后的SEM形貌图及对应的EDS元素线扫描分析结果; 图中的白色长方形区域为FIB的取样位置

    Figure 2.  The SEM morphology and EDS line analysis of V-4Cr-4Ti/Ti samples: (a) Before and (b) after irradiation; the positions of FIB samples are marked with white rectangles.

    图 3  V-4Cr-4Ti/Ti界面及两侧基体区域的硬度分布

    Figure 3.  Vickers hardness distribution across the interface of the V-4Cr-4Ti/Ti.

    图 4  V-4Cr-4Ti/Ti界面区域及两侧基体辐照后的TEM形貌图 (a) 钒基体; (b) 界面I; (c) 界面II; (d) 钛基体

    Figure 4.  The TEM images of V-4Cr-4Ti/Ti after irradiation: (a) V-4Cr-4Ti; (b) interface I; (c) interface II; (d) Ti.

    图 5  辐照后V-4Cr-4Ti/Ti界面及两侧基体的位错密度(a) 和尺寸 (b)

    Figure 5.  Dislocation density (a) and diameter (b) distribution across the interface.

    图 6  辐照后界面处的STEM形貌图 (a) 钒基体; (b) 界面I; (c) 界面II

    Figure 6.  STEM images of V-4Cr-4Ti/Ti interface after irradiation: (a) V-4Cr-4Ti; (b) interface I; (c) interface II.

    图 7  辐照前后析出物EDS分析结果 (a) 辐照前界面; (b) 辐照后钒基体; (c) 辐照后界面I; (d) 辐照后界面II

    Figure 7.  EDS analysis of the V-4Cr-4Ti/Ti: (a) Interface before irradiation; (b) V-4Cr-4Ti after irradiation; (c) interface I after irradiation; (d) interface II after irradiation.

    图 8  辐照后钒基体和界面I处析出物EDS面扫描分析结果 (a)—(d) 钒基体; (e)—(h) 界面I

    Figure 8.  EDS-mapping analysis of the V-4Cr-4Ti and interface I after irradiation: (a)−(d) V-4Cr-4Ti; (e)−(h) interface I.

    图 9  辐照后样品不同区域的选区电子衍射分析结果 (a) 钒基体; (b) 钛基体; (c), (d) 界面I; (e), (f) 界面II

    Figure 9.  Diffraction analysis of irradiated samples: (a) V-4Cr-4Ti; (b) Ti; (c), (d) interface I; (e) (f) interface II.

    表 1  通过纳米压痕所得硬化实验值与采用DBH模型对辐照硬化进行的估算值

    Table 1.  Experimental hardness values by nanoindentation and the estimated hardness values calculated by the DBH model

    钒基体界面I界面II钛基体
    ΔHV实验值20713655247
    N/m–31.5 × 10228.0 × 10218.4 × 10211.3 × 1022
    d/nm7.3 ± 1.519.9 ± 5.020.3 ± 4.811.2 ± 2.0
    N·d1.09 × 10141.59 × 10141.70 × 10141.46 × 1014
    $ \sqrt {N\cdot d} $1.05 × 1071.26 × 1071.31 × 1071.21 × 107
    ΔHV计算值39.527.738.6*44.8
    注: *表示界面II处α + β Ti区的硬化按α-Ti和β-Ti各占50%进行计算.
    DownLoad: CSV
    Baidu
  • [1]

    张高伟, 韩文妥, 崔丽娟, 万发荣 2018 稀有金属材料与工程 5 1537

    Zhang G W, Han W T, Cui L J, Wan F R 2018 Rare Metal Mat. Eng. 5 1537

    [2]

    Zhang G W, Han W T, Yi X O, Wan F R 2018 Appl. Sci. 8 577Google Scholar

    [3]

    Gohar Y, Majumdar S, Smith D L 2000 Fusion Eng. Des. 49 551

    [4]

    Smith D L, Billone M C, Natesan K 2000 Int. J. Refract. Met. H 18 213Google Scholar

    [5]

    Jones R H, Heinisch H L, McCarthy K A 1999 J. Nucl. Mater. 271 518

    [6]

    Kirillov I R, Danilov I V, Sidorenkov S I, Strebkov Y S, Mattas R F, Gohar Y, Hua T Q, Smith D L 1998 Fusion Eng. Des. 39 669

    [7]

    Mattas R F, Smith D L, Reed C D, Parka J H, Kirillov I R, Strebkov Y S, Rusanov A E, Votinov S N 1998 Fusion Eng. Des. 39 659

    [8]

    Muroga T 2005 Mater. Trans. 46 405Google Scholar

    [9]

    Malang S, Bühler L 1994 MHD Pressure Drop in Ducts with Imperfectly Insulating Coatings (Chicago: Argonne National Laboratory Report) Report No. ANL/FPP/TM-269

    [10]

    Vertkov A V, Evtikhin V A, Lyublinski I E 2001 Fusion Eng. Des. 58 731

    [11]

    Smith D L, Konys J, Muroga T, Evitkhin V 2002 J. Nucl. Mater. 307 1314

    [12]

    Muroga T, Pint B A 2010 Fusion Eng. Des. 85 1301Google Scholar

    [13]

    Wang J, Li Q, Xiang Q Y, Cao J L 2016 Fusion Eng. Des. 102 94Google Scholar

    [14]

    Suzuki A, Muroga T, Pint B A, Yoneoka T, Tanaka S 2003 Fusion Eng. Des. 69 397Google Scholar

    [15]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307 1344

    [16]

    Pint B A, Tortorelli P F, JankowskiA, Hayes J, Muroga T, Suzuki A, Yeliseyeva O I, Chernov V M 2004 J. Nucl. Mater. 329 119

    [17]

    Jiří M, Pavel C 2010 Adv. Sci. Technol. 66 19

    [18]

    Vitkovsky I V, Gorunov A V, Kirillov I R, Khoroshikh V M, Kraev V D, Ogorodnikov A P, Petrovsky V Y, Rusanov A E 2002 Fusion Eng. Des. 61 739

    [19]

    Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102Google Scholar

    [20]

    Kolluri K, Demkowicz M J 2012 Phys. Rev. B 85 205416Google Scholar

    [21]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Meth. B 310 75Google Scholar

    [22]

    ASTM Committee E521–96 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation (vol.12.02) (West Conshohocken: Copyright © ASTM International) p8

    [23]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第143页

    Wan F R 1993 Irradiation Damage of Metal Materials (Vol. 1) (Beijing: Science Press) p143 (in Chinese)

    [24]

    Fu E G, Carter J, Swadener G, Misra A, Shao L, Wang H, Zhang X 2009 J. Nucl. Mater. 385 629Google Scholar

    [25]

    Watanabe H, Nagamine M, Yamasaki K, Yoshida N, Heo N J, Nagasaka T, Muroga T 2005 Mater. Sci. Forum 475 1491

    [26]

    Heo N J, Nagasaka T, Muroga T, Nishimura A, Shinozaki K, Watanabe H 2003 Fusion Sci. Technol. 44 470Google Scholar

    [27]

    Han W Z, Demkowicz M J, Fu E G, Wang Y Q, Misra A 2012 Acta Mater. 60 6341Google Scholar

    [28]

    Zhang Y F, Zhan Q, Ohnuki S, Kimura A, Wan F R, Yoshida K, Nagai Y 2019 J. Nucl. Mater. 517 1Google Scholar

    [29]

    Bergner F, Pareige C, Hernández-Mayoral M, Malerba L, Heintze C 2014 J. Nucl. Mater. 448 96Google Scholar

    [30]

    张高伟 2018 博士学位论文 (北京: 北京科技大学)

    Zhang G W 2018 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

  • [1] Zhao Yong-Peng, Dou Yan-Kun, He Xin-Fu, Yang Wen. Cascade overlap simulation of formation of dislocation loops in Ti-V-Ta multi-principal element alloy. Acta Physica Sinica, 2024, 73(22): 226102. doi: 10.7498/aps.73.20241074
    [2] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [3] Ma Li-Juan, Han Ting, Gao Sheng-Qi, Jia Jian-Feng, Wu Hai-Shun. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Acta Physica Sinica, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [4] Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [5] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [6] Fan Wei, Zeng Zhi. Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials. Acta Physica Sinica, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [7] Sun Peng, Du Lei, Chen Wen-Hao, He Liang. A latent defect degradation model of metal-oxide-semiconductor field effect transistor based on pre-irradiation1/f noise. Acta Physica Sinica, 2012, 61(6): 067801. doi: 10.7498/aps.61.067801
    [8] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men, Wang Yue-Hu, Guo Hui. Stability of the intrinsic defects in unintentionally doped 4H-SiC epitaxial layer. Acta Physica Sinica, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [9] Luo Xiao-Jing, Yang Chang-Ping, Song Xue-Ping, Xu Ling-Fang. Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12. Acta Physica Sinica, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [10] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [11] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [12] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [13] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [14] Luo Hong-Zhi, Jia Lin, Li Yang-Xian, Meng Fan-Bin, Shen Jiang, Chen Nan-Xian, Wu Guang-Heng, Yang Fu-Ming. Structure and magnetic properties of Er3(Fe, Co, M)29 compounds (M=Cr, V, Ti, Mn, Ga, Nb). Acta Physica Sinica, 2005, 54(11): 5246-5250. doi: 10.7498/aps.54.5246
    [15] Yang Shuai, Li Yang-Xian, Ma Qiao-Yun, Xu Xue-Wen, Niu Ping-Juan, Li Yong-Zhang, Niu Sheng-Li, Li Hong-Tao. FTIR study an VO2 defect in fast neutron irradiated Czochralski silicon. Acta Physica Sinica, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [16] Zhu Jun, Mao Xiang-Yu, Chen Xiao-Bing. Study on Raman spectra of Bi_4-xLa_xTi_3O_12-SrBi_4-yLayTi_4O_15 intergrowth ferroelectrics. Acta Physica Sinica, 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
    [17] Guo Hong-Yong, Liu Bao-Dan, Tang Ning, Luo Hong-Zhi, Li Yang-Xian, Yang Fu-Ming, Wu Guang-Heng. The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd3(Fe,Co,M)29(M=Ti,V,Cr) compounds. Acta Physica Sinica, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [18] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. A study on the properties of (Bi, La)4Ti3O12- Sr(Bi, La)4Ti4O15 intergrowth ferroelectrics. Acta Physica Sinica, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
    [19] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. Study of properties of lanthanum doped SrBi4Ti4O15 ferroelectric ceramics. Acta Physica Sinica, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [20] PENG CHEN, SUN HENG-HUI. THE BULK AND INTERFACE DEFECTS IN ELECTRON IRRADIATED InP. Acta Physica Sinica, 1987, 36(11): 1408-1415. doi: 10.7498/aps.36.1408
Metrics
  • Abstract views:  7825
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2019
  • Accepted Date:  28 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回
Baidu
map