-
随着微电子产业的不断发展,刻蚀特征尺度达到纳米级,等离子体刻蚀工艺过程机理研究越来越受到重视. 刻蚀表面仿真是研究离子刻蚀特性的重要方法. 在离子刻蚀表面仿真中,离子刻蚀产额模型是研究刻蚀机理的重要模型,也是元胞自动机等仿真方法的重要基础. 为了解决利用传统方法无法得到准确刻蚀产额模型参数的问题,本文提出一种基于刻蚀速率匹配的离子刻蚀产额优化建模方法,该方法以实际刻蚀速率与模拟刻蚀速率之间的均方差为优化目标,利用基于分解的多目标进化算法来优化离子的刻蚀产额模型参数,并将得到的刻蚀产额模型参数应用到采用元胞方法的刻蚀工艺的实际仿真过程中. 实验结果表明了该刻蚀产额优化建模方法的有效性.With the constant development of the microelectronics industry, the etching scale has come up to nanoscale, which makes the plasma etching mechanism attract more and more attention. The profile surface simulation is one of the most significant technologies for the study of ion etching. In the process of ion etching surface simulation, the ion etching yield model serves as an important model for the study of etching mechanism as well as the basic foundation of some simulations such as cellular automata. In order to solve the problem that it is difficult to achieve accurate parameters of etching yield model by adopting the traditional method, the paper proposes an optimization method for ion etching yield modeling based on etching velocity matching. Aiming at reducing the mean square error between the simulated etching velocity and the real etching velocity, it optimizes the parameters of ion etching yield modeling by using the decomposition-based multi-object evolution algorithm, which then is applied to etching simulation process on the basis of cellular automata. And the validity of the proposed method was verified by the experimental results.
[1] Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华 2013 62 075202]
[2] Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172
[3] Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960
[4] Osher S, Sethian J A 1988 J. Comput. Phys. 79 12
[5] Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463
[6] Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[7] Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130
[8] Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201 (in Chinese) [杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 62 208201]
[9] Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 62 200203]
[10] Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]
[11] Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese) [永贵, 黄海军, 许岩 2013 62 010506]
[12] Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853
[13] Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229
[14] Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]
[15] Steinbruchel C 1989 Appl. Phys. Lett. 55 1960
[16] Osao Y, Ono K 2005 Jpn. J. Appl. Phys. 44 8650
[17] Yang H J, Song Y X, Zheng S L, Wang L H, Jia P F 2013 Proc. 25th Chinese Control and Decision Confe- rence Guiyang, China, May 25-27, 2013 p2913
[18] Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102
[19] Liu J F 2009 Chin. Phys. B 18 2615
[20] Zhang Q, Li H 2007 IEEE Trans. Evolut. Comput. 11 712
[21] Li H, Zhang Q 2009 IEEE Trans. Evolut. Comput. 12 284
[22] Chiaramonte L, Colombo R, Fazio G, Magna A L 2012 Comp. Mater. Sci. 54 227
-
[1] Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华 2013 62 075202]
[2] Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172
[3] Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960
[4] Osher S, Sethian J A 1988 J. Comput. Phys. 79 12
[5] Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463
[6] Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[7] Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130
[8] Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201 (in Chinese) [杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 62 208201]
[9] Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 62 200203]
[10] Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]
[11] Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese) [永贵, 黄海军, 许岩 2013 62 010506]
[12] Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853
[13] Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229
[14] Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]
[15] Steinbruchel C 1989 Appl. Phys. Lett. 55 1960
[16] Osao Y, Ono K 2005 Jpn. J. Appl. Phys. 44 8650
[17] Yang H J, Song Y X, Zheng S L, Wang L H, Jia P F 2013 Proc. 25th Chinese Control and Decision Confe- rence Guiyang, China, May 25-27, 2013 p2913
[18] Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102
[19] Liu J F 2009 Chin. Phys. B 18 2615
[20] Zhang Q, Li H 2007 IEEE Trans. Evolut. Comput. 11 712
[21] Li H, Zhang Q 2009 IEEE Trans. Evolut. Comput. 12 284
[22] Chiaramonte L, Colombo R, Fazio G, Magna A L 2012 Comp. Mater. Sci. 54 227
计量
- 文章访问数: 6303
- PDF下载量: 419
- 被引次数: 0