-
The Hall drift of electrons in anode layer plasma accelerator is analyzed based on Lorentz transformation. It is shown that Hall drift does not exist always in the cross-field. If the ratio of E to B is lager than light speed, Hall drift will disappear. The further analysis shows that the Hall drift is not always in the form of gyration. It is also in the forms of wave and straight line, depending on electric-magnetic field configuration and initial energy of electrons. The electric-magnetic configuration determines the speed of drift, and then affects electron energy. This can determine the ionization efficiency in discharge. A numerical simulation using the Particle-in-Cell method is performed. The result indicates that a nice ratio of E and B will produce high ionization efficiency (for argon, this value is about 4106). This value will change with working gas according to the ionization cross section determined by electron energy.
-
Keywords:
- Hall drift /
- ionization efficiency /
- Hall plasma accelerator /
- numerical simulation
[1] Roth J R 1995 Industrial Plasma Engineering (Vol. 1): Principles (Bristol: IOP Publishing) p204
[2] Roth J R 2001 Industrial Plasma Engineering (Vol. 2): Applications to Nonthermal Plasma Processing (Bristol: IOP Publishing) p85
[3] Morozov A I, Esinchuk Yu V, Tilinin G N 1972 Sov. Phys. Tech. Phys. 17 38
[4] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Source Sci. Technol. 8 R1
[5] Keidar M, Boyd I D 2005 Appl. Phys. Lett. 87 121501
[6] Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104
[7] Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305
[8] Jacson J D 1998 Classical Electrodynamics 3rd Edition (Hoboken: Wiley) p586
[9] Verboncoeur J P, Langdon A B, Gladd N T 1999 Comp. Phys. Comm. 87 199
[10] Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese) [耿少飞, 唐德礼, 赵杰, 邱孝明 2009 58 5520]
[11] Hughes A L, Klein E 1924 Phys. Rev. 23 450
[12] Compton K T, Van Voorhis C C 1925 Phys. Rev. 26 436
[13] Smith P T 1930 Phys. Rev. 36 1293
[14] Bleakney W 1930 Phys. Rev. 36 1303
[15] Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F 1995 Phys. Rev. A 52 1115
[16] Wetzel R C, Baiocchi F A, hayes T R, Freund R S 1987 Phys. Rev. A 35 559
[17] Rapp D, Golden P 1965 J. Chem. Phys. 43 1464
-
[1] Roth J R 1995 Industrial Plasma Engineering (Vol. 1): Principles (Bristol: IOP Publishing) p204
[2] Roth J R 2001 Industrial Plasma Engineering (Vol. 2): Applications to Nonthermal Plasma Processing (Bristol: IOP Publishing) p85
[3] Morozov A I, Esinchuk Yu V, Tilinin G N 1972 Sov. Phys. Tech. Phys. 17 38
[4] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Source Sci. Technol. 8 R1
[5] Keidar M, Boyd I D 2005 Appl. Phys. Lett. 87 121501
[6] Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104
[7] Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305
[8] Jacson J D 1998 Classical Electrodynamics 3rd Edition (Hoboken: Wiley) p586
[9] Verboncoeur J P, Langdon A B, Gladd N T 1999 Comp. Phys. Comm. 87 199
[10] Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese) [耿少飞, 唐德礼, 赵杰, 邱孝明 2009 58 5520]
[11] Hughes A L, Klein E 1924 Phys. Rev. 23 450
[12] Compton K T, Van Voorhis C C 1925 Phys. Rev. 26 436
[13] Smith P T 1930 Phys. Rev. 36 1293
[14] Bleakney W 1930 Phys. Rev. 36 1303
[15] Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F 1995 Phys. Rev. A 52 1115
[16] Wetzel R C, Baiocchi F A, hayes T R, Freund R S 1987 Phys. Rev. A 35 559
[17] Rapp D, Golden P 1965 J. Chem. Phys. 43 1464
Catalog
Metrics
- Abstract views: 8149
- PDF Downloads: 669
- Cited By: 0