Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of acceleration grid voltage and anode flow rate on performance of ion thruster

Li Jian-Peng Jin Wu-Yin Zhao Yi-De

Citation:

Influence of acceleration grid voltage and anode flow rate on performance of ion thruster

Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De
PDF
HTML
Get Citation
  • In order to achieve the optimal performance and reliability of the ion thruster in a wide power range, the influence of acceleration grid voltage and anode flow rate on the performance of ion thruster are studied experimentally and theoretically. The results show that in a certain range the ion beam current decreases continuously with the decrease of the absolute value of the accelerating voltage, and then increases suddenly. The electron backstreaming limited voltages in large and small thrust modes are –140 and –115 V, respectively. When the anode flow rate increases, the discharge voltage and discharge loss increase monotonically, and the deceleration current decreases monotonously. Under the power of 300−4850 W, the thrust is 11−188 mN, the specific impulse is 1800−3567 s, and the efficiency ranges from 34% to 67% by adjusting the anode current, grid voltage and working fluid gas flow. The maximum efficiency of thruster reaches 67% at 3000 W. This turning point is critical for thruster design and on-orbit applications. Choosing a reasonable range of working parameters can improve the performance and life of the thruster in application.
      Corresponding author: Li Jian-Peng, ljplzjtedu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210) and the Fund for Distinguished Young Scholars of China Academy of Space Technology.
    [1]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311

    [2]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [3]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [4]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [5]

    Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar

    [6]

    Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar

    [7]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1

    [8]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1

    [9]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [10]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [11]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [12]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [13]

    Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120

    [14]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar

    [15]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [16]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [17]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [18]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [22]

    王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar

    Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar

    [23]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [24]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [25]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1

    [26]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [27]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [28]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [29]

    Piel A, Brown M 2011 Phys. Today 64 55

    [30]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [31]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [32]

    Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar

    [33]

    Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar

  • 图 1  离子推力器试验组成图

    Figure 1.  Schematic of experiental principle.

    图 2  离子推力器点火照片

    Figure 2.  Discharge of the ion thruster.

    图 3  离子束电流随加速电压变化情况 (a) 小推力模式; (b) 大推力模式

    Figure 3.  Beam current as a function of accel-grid voltage for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 4  放电电压随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Figure 4.  Discharge voltage as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 5  放电损耗随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Figure 5.  Discharge loss as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 6  减速电流随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Figure 6.  Decel-current as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 7  推力、比冲和效率随功率变化曲线 (a) 推力; (b) 比冲; (c) 效率

    Figure 7.  Thrust, specific impulse and efficiency as a function of input power: (a) Thrust; (b) specific impulse; (c) efficiency.

    表 1  多模式离子推力器应用情况

    Table 1.  Application of multi-mode ion thruster.

    离子推力器推力器性能指标
    推力/mN比冲/s效率功率/kW
    NSTAR[7-10]19.5—921951—308338%~59%0.5—2.3
    NEXT[11]25.5—2361400—419032%~71%0.5—6.9
    XIPS-25[12]14.4—173.71610—366435%~66%0.3—4.5
    IT-500[13]375, 585, 750714218, 28, 35
    T6[14]76.5, 102.1127.7, 147.83720, 38803990, 39802520, 32804040, 4620
    DownLoad: CSV
    Baidu
  • [1]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311

    [2]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [3]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [4]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [5]

    Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar

    [6]

    Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar

    [7]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1

    [8]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1

    [9]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [10]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [11]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [12]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [13]

    Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120

    [14]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar

    [15]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [16]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [17]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [18]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [22]

    王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar

    Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar

    [23]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [24]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [25]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1

    [26]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [27]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [28]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [29]

    Piel A, Brown M 2011 Phys. Today 64 55

    [30]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [31]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [32]

    Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar

    [33]

    Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar

  • [1] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [2] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [3] Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun. A method of real-time monitoring beam output stability of intense pulsed ion beam. Acta Physica Sinica, 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [4] Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Experimental study on 10-cm ECRIT neutralizer with nitrogen gas. Acta Physica Sinica, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [5] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [6] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [8] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [9] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [10] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [11] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [12] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [13] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [14] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [15] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical study of dynamic effects and evaporation of target material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2006, 55(7): 3501-3505. doi: 10.7498/aps.55.3501
    [16] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang. Study on irradiation threshold of a target irradiated by an intense pulsed ion b eam. Acta Physica Sinica, 2005, 54(4): 1636-1640. doi: 10.7498/aps.54.1636
    [17] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [18] Mei Xian-Xiu, Xu Jun, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [19] TIAN REN-HE, ZHANG HUI-XING. BEAM TEMPERATURE AND ENERGY BROADENING OF A HIGH-CURRENT HEAVY-ION BEAM IN AN AXIALLY SYMMETRIC ELECTRIC-FIELD. Acta Physica Sinica, 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
    [20] JIANG XING-LIU, CHEN KE-FAN, PIAO YU-BO. A NEW TYPE OF PULSED ELECTRON AND ION SOURCE WITH A DURATION OF NANOSECONDS. Acta Physica Sinica, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
Metrics
  • Abstract views:  4649
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2021
  • Accepted Date:  25 August 2021
  • Available Online:  10 September 2021
  • Published Online:  05 January 2022

/

返回文章
返回
Baidu
map