搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大束流阳极层离子源的阴极刻蚀现象及消除措施

汤诗奕 马梓淇 邹云霄 安小凯 杨东杰 刘亮亮 崔岁寒 吴忠振

引用本文:
Citation:

大束流阳极层离子源的阴极刻蚀现象及消除措施

汤诗奕, 马梓淇, 邹云霄, 安小凯, 杨东杰, 刘亮亮, 崔岁寒, 吴忠振

Study and Elimination of the Cathode Etching on Large Beam-Anode Layer Ion Source

Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen
PDF
导出引用
  • 阳极层离子源可输出高密度离子束流,广泛用于等离子体清洗和辅助沉积,但大束流下内部易发生放电击穿,且大量离子轰击内外阴极导致明显刻蚀, 易造成样品污染。本文提出阳极环绕磁屏蔽罩和内外阴极溅射屏蔽板的设计方案, 并仿真研究了其对离子源电磁场和等离子体放电输运的影响。发现阳极环绕磁屏蔽罩可切断离子源内部阴阳极间的磁场回路,消除打火条件。内外阴极溅射屏蔽板选择溅射产额低且绝缘性能好的氧化铝, 即可阻挡离子溅射, 又能屏蔽阴极外表面电场,使等离子体放电向阳极压缩,在抑制阴极刻蚀行为的同时提升离子输出效率。当距离阴极外表面 9 mm 时, 溅射屏蔽板的作用效果最优,不仅能获得稳定放电和高效输出,还可大幅削弱阴极刻蚀行为并减少污染。实验结果显示,改进离子源无内部打火,输出高效且清洁, 相同电流下离子输出效率较原离子源实际提高 36%,玻璃基片在经过 1 h 清洗后,表面成分几乎不变, 来自阴极溅射的 Fe 元素含量仅为 0.03%,比原离子源低 2 个数量级, 含量约为原离子源的 0.6%, 实验结果验证了理论分析。
    Large beam-anode layer ion source can produce high-density ions, and has been widely used in plasma cleaning and assisted deposition. However, when increasing the ion-beams, arcing always occurs inside the ion source and serious etching will take place on the cathode which results in sample pollution especially in long-time cleaning. This work proposes two designed structures, called magnetic shields surrounding the anode and sputtering shields on the top of the inner and outer cathodes, respectively. The influence of the designed structure on the electromagnetic field and the plasma properties of the ion source are studied by a self-established simulation techniques based on the particle-in-cell/Monte Carlo collision method and test particle Monte Carlo method. The results show that the magnetic shields surrounding the anode cut off the magnetic induction line between the cathode and anode, which eliminates the arcing condition in the ion source. The sputtering shields for the cathodes use alumina ceramics because of the extremely low sputtering yield and high insulation performance. Therefore, the sputtering shields can not only resist the ion sputtering, but also shield the electric field on the outer surface of the cathode. As a result, the plasma discharge region is compressed towards the anode and away from the cathode simultaneously, which provides a stronger electric field force directed to the output region for Ar+ ions, also resulting in a suppressed cathode etching behavior but an improved Ar+ ion output efficiency. The optimized calculation shows that the best distance from the sputtering shields to the cathode surface is 9 mm. The discharge experiments reveal that the modified ion source can eliminate the inside arcing and provide a clean and strong ion beam with a high efficiency. At the same discharge current, the output efficiency of the modified ion source is 36% higher than that of the original ion source. When used in the plasma cleaning, the glass substrate remains transparent and keeps the original element composition ratio. The detected Fe content, comes from the cathode sputtering, is only 0.03% after the plasma cleaning for 1 h, which is 2 orders of magnitude smaller than that cleaned by the original ion source. The Fe content of the modified ion source is about 0.6% of the original ion source, which is in good agreement with the result of simulation optimization.
  • [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737

    [2]

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5 (in Chinese) [赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5]

    [3]

    Lackner J M, Waldhauser W, Schwarz M, Mahoney L, Major B, 2008 Vacuum. 83 302

    [4]

    Lee S, Kim D G 2015 J. Funct. Anal. 24 162

    [5]

    Dudnikov V 2012 Rev. Sci. Instrum. 83 02A713

    [6]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Ricky K Y Fu, Paul K Chu, Wu Z Z 2020 Plasma Sources Sci. Technol.29 025016

    [7]

    Guo X Y, Cao Y S, Ma J P 2021 China Patent (in Chinese) [郭杏元, 曹永盛, 马金鹏 2021 中国专利]

    [8]

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54 (in Chinese) [汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54]

    [9]

    Zheng J, Zhou H, Zhao D C 2019 China Patent (in Chinese) [郑军, 周晖, 赵栋才 2019 中国专利]

    [10]

    Wang M, Chen G 2020 China Patent (in Chinese) [王鸣, 陈刚 2020 中国专利]

    [11]

    Brenning N, Gudmundsson J T, Raadu M A, Petty T J, Minea T, Lundin D 2017 Plasma Sources Sci. Technol. 26 125003

    [12]

    Jiang Y, Tang H, Ren J, Li M, Cao J 2018 J. Phys. D: Appl. Phys 51 035201

    [13]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas. 15 104501

    [14]

    Birdsall C K 1991 IEEE Trans Plasma Sci. 19 65

    [15]

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z C, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Wu Z Z 2021 Acta Phys. Sin. 70 045202 (in Chinese) [李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 70 045202]

    [16]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285

    [17]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K Chu, Wu Z Z 2022 J. Phys. D. Appl. Phys. 55 325203

    [18]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302

    [20]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van A K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 194018

    [21]

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203 (in Chinese) [崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 71 055203]

    [22]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591

    [23]

    Cui S H, Wu Z Z, Xiao S, Chen S, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204 (in Chinese) [崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 68 195204]

    [24]

    Park D H, Kim J H, Ermakov Y 2008 Rev. Sci. Instrum. 79 02B312

    [25]

    Gui B, Yang L, Zhou H, Luo S, Xu J, Ma Z, Zhang Y 2022 Vacuum. 200 111065

    [26]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究.  , doi: 10.7498/aps.73.20240339
    [2] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能.  , doi: 10.7498/aps.73.20240822
    [3] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法.  , doi: 10.7498/aps.72.20230854
    [4] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真.  , doi: 10.7498/aps.72.20222394
    [5] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升.  , doi: 10.7498/aps.72.20230643
    [6] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜.  , doi: 10.7498/aps.71.20212010
    [7] 赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪. 阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响.  , doi: 10.7498/aps.68.20190654
    [8] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能.  , doi: 10.7498/aps.68.20190806
    [9] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究.  , doi: 10.7498/aps.68.20182070
    [10] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法.  , doi: 10.7498/aps.65.030702
    [11] 高扬福, 宋亦旭, 孙晓民. 基于刻蚀速率匹配的离子刻蚀产额优化建模方法.  , doi: 10.7498/aps.63.048201
    [12] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法.  , doi: 10.7498/aps.63.120701
    [13] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究.  , doi: 10.7498/aps.63.214103
    [14] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究.  , doi: 10.7498/aps.62.214102
    [15] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究.  , doi: 10.7498/aps.62.114102
    [16] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究.  , doi: 10.7498/aps.61.134104
    [17] 廖庆亮, 张 跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张 篁. 碳纳米管阴极的强流脉冲发射性能研究.  , doi: 10.7498/aps.56.5335
    [18] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究.  , doi: 10.7498/aps.55.1517
    [19] 宁兆元, 程珊华. 非晶含氢碳膜的氧等离子体刻蚀性能研究.  , doi: 10.7498/aps.48.1950
    [20] 艾克聪, 周立伟, 西门纪业. 宽束和细束电磁复合聚焦球面阴极透镜的象差理论.  , doi: 10.7498/aps.35.1199
计量
  • 文章访问数:  104
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-26

/

返回文章
返回
Baidu
map