-
以洛伦兹变换方法为基础,分析了阳极层霍尔等离子体加速器中电子的霍尔漂移,结果表明在交叉场中,霍尔漂移并不总是存在的,E/B的比值大于光速时,霍尔漂移将不存在.进一步的分析表明,霍尔漂移也并不总是回旋形式的,不同的电磁场配置以及不同的电子初始能量将带来不同形式的漂移,包括回旋形式,波浪线形式,甚至直线形式.电磁场的配置也决定着霍尔漂移的速度,在很大程度上影响着电子的能量,这就决定了放电时的电离效率.对不同电磁场配置进行数值模拟发现,合理的电磁场比值能够得到更好的电离效率(对于氩,这个数值大约为4106).不同的气体,根据其电离碰撞截面与电子能量的关系,都有不同的合理比值.The Hall drift of electrons in anode layer plasma accelerator is analyzed based on Lorentz transformation. It is shown that Hall drift does not exist always in the cross-field. If the ratio of E to B is lager than light speed, Hall drift will disappear. The further analysis shows that the Hall drift is not always in the form of gyration. It is also in the forms of wave and straight line, depending on electric-magnetic field configuration and initial energy of electrons. The electric-magnetic configuration determines the speed of drift, and then affects electron energy. This can determine the ionization efficiency in discharge. A numerical simulation using the Particle-in-Cell method is performed. The result indicates that a nice ratio of E and B will produce high ionization efficiency (for argon, this value is about 4106). This value will change with working gas according to the ionization cross section determined by electron energy.
-
Keywords:
- Hall drift /
- ionization efficiency /
- Hall plasma accelerator /
- numerical simulation
[1] Roth J R 1995 Industrial Plasma Engineering (Vol. 1): Principles (Bristol: IOP Publishing) p204
[2] Roth J R 2001 Industrial Plasma Engineering (Vol. 2): Applications to Nonthermal Plasma Processing (Bristol: IOP Publishing) p85
[3] Morozov A I, Esinchuk Yu V, Tilinin G N 1972 Sov. Phys. Tech. Phys. 17 38
[4] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Source Sci. Technol. 8 R1
[5] Keidar M, Boyd I D 2005 Appl. Phys. Lett. 87 121501
[6] Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104
[7] Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305
[8] Jacson J D 1998 Classical Electrodynamics 3rd Edition (Hoboken: Wiley) p586
[9] Verboncoeur J P, Langdon A B, Gladd N T 1999 Comp. Phys. Comm. 87 199
[10] Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese) [耿少飞, 唐德礼, 赵杰, 邱孝明 2009 58 5520]
[11] Hughes A L, Klein E 1924 Phys. Rev. 23 450
[12] Compton K T, Van Voorhis C C 1925 Phys. Rev. 26 436
[13] Smith P T 1930 Phys. Rev. 36 1293
[14] Bleakney W 1930 Phys. Rev. 36 1303
[15] Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F 1995 Phys. Rev. A 52 1115
[16] Wetzel R C, Baiocchi F A, hayes T R, Freund R S 1987 Phys. Rev. A 35 559
[17] Rapp D, Golden P 1965 J. Chem. Phys. 43 1464
-
[1] Roth J R 1995 Industrial Plasma Engineering (Vol. 1): Principles (Bristol: IOP Publishing) p204
[2] Roth J R 2001 Industrial Plasma Engineering (Vol. 2): Applications to Nonthermal Plasma Processing (Bristol: IOP Publishing) p85
[3] Morozov A I, Esinchuk Yu V, Tilinin G N 1972 Sov. Phys. Tech. Phys. 17 38
[4] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Source Sci. Technol. 8 R1
[5] Keidar M, Boyd I D 2005 Appl. Phys. Lett. 87 121501
[6] Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104
[7] Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305
[8] Jacson J D 1998 Classical Electrodynamics 3rd Edition (Hoboken: Wiley) p586
[9] Verboncoeur J P, Langdon A B, Gladd N T 1999 Comp. Phys. Comm. 87 199
[10] Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese) [耿少飞, 唐德礼, 赵杰, 邱孝明 2009 58 5520]
[11] Hughes A L, Klein E 1924 Phys. Rev. 23 450
[12] Compton K T, Van Voorhis C C 1925 Phys. Rev. 26 436
[13] Smith P T 1930 Phys. Rev. 36 1293
[14] Bleakney W 1930 Phys. Rev. 36 1303
[15] Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F 1995 Phys. Rev. A 52 1115
[16] Wetzel R C, Baiocchi F A, hayes T R, Freund R S 1987 Phys. Rev. A 35 559
[17] Rapp D, Golden P 1965 J. Chem. Phys. 43 1464
计量
- 文章访问数: 8148
- PDF下载量: 669
- 被引次数: 0