搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型机-电模型及脉冲等离子体推力器能量转化效率分析

杨楠楠 王尚民 张家良 温小琼 赵凯

引用本文:
Citation:

改进型机-电模型及脉冲等离子体推力器能量转化效率分析

杨楠楠, 王尚民, 张家良, 温小琼, 赵凯

Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters

Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai
cstr: 32037.14.aps.73.20241117
PDF
HTML
导出引用
  • 最初机-电模型是针对电磁轨道炮的电磁加速过程提出的, 脉冲等离子体推力器(pulsed plasma thruster, PPT)的工作原理也是通过电磁加速产生元冲量, 因此机-电模型是PPT能量转化及元冲量产生机制的主要理论分析工具之一. 但是作为PPT放电回路一部分的等离子体通道, 其几何形态与目前机-电模型的电流片模型存在明显差异. PPT放电通道在离开推进剂表面向外喷出过程中多呈现弯曲形状, 并不断变化, 而非平直片状. 结合PPT放电通道的实际形态, 本文提出了PPT放电通道的二维形态电流片模型, 建立基于二维电流片的改进型机-电模型. 通过分析放电通道受力情况以及电磁加速过程, 推导了PPT羽流的电磁加速动能与放电回路电感量随时间演变函数的关系. 针对机-电模型电路方程, 提出了分段拟合PPT放电波形获得回路电感量随时间演变函数的算法. 形成了基于PPT放电波形分析得到羽流电磁加速动能的计算方案. 将改进型机-电模型应用于PPT样机能量转化效率评价, 通过分析PPT放电能量转化过程阐释了PPT机-电转化效率低的原因, 提出了提高PPT机-电效率的一种探索思路.
    The primary electro-mechanical model is developed for the acceleration kinetics of electromagnetic railguns. Pulsed plasma thrusters (PPTs), whose operation principle is similar to that of electromagnetic railguns, generate thrust via electromagnetic acceleration of plasma. Therefore, the electro-mechanical model serves as a valuable analytical tool to explore the mechanisms of energy conversion and thrust generation of PPTs. In fact, a PPT initiates discharge at its propellant surface and then ejects the discharged channel away to form accelerated plume. During the acceleration, the plasma channel assumes a curved shape, which is different from the flat sheet shape. The curved geometric shape of PPT discharge channel makes the flat current sheet model currently used in the electro-mechanical models inherently flawed. In this paper, a two-dimensional (2D) curved current sheet model is proposed to improve the PPT electro-mechanical model, by referring to the curved morphology of PPT discharge plasma channels. No matter what is the real geometry of the 2D current sheet, the Ampere force on discharge plasma channels and corresponding kinetics can be derived to obtain final kinetic energy of discharge plasma channels. As a result, the relation between the kinetic energy and the inductance of PPT discharge circuit is obtained and expressed as $ {E}_{{\mathrm{k}}}=\displaystyle\int _{0}^{{t}_{{\mathrm{e}}{\mathrm{n}}{\mathrm{d}}}}{i\left(t\right)}^{2}\frac{{\mathrm{d}}{L}_{{\mathrm{e}}{\mathrm{q}}}\left(t\right)}{{\mathrm{d}}t}{\mathrm{d}}t $. To determine the inductance as a temporal function, an algorithm for the inductance is proposed in which time-segment fitting of PPT discharge waveforms is adopted. Moreover, based on the temporal function of the inductance, PPT discharge waveforms can be simulated by using the ODE45 solver of MATLAB with high fitting goodness. So far, a calculation scheme for the kinetic energy of PPT plumes and simulation code for PPT discharge waveforms have set up based on the improved electro-mechanical model. To verify the improved model and the corresponding calculation scheme, the PPT prototype is used to evaluate its energy conversion efficiency. The results show that the model enables elucidating the low PPT electro-mechanical efficiency, which is attributed to the partition limitation of PPT energy to electromagnetic acceleration process. Accordingly, a possible exploration routine for elevating PPT electro-mechanical efficiency is suggested.
      通信作者: 张家良, zhangjl@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12375248)资助的课题.
      Corresponding author: Zhang Jia-Liang, zhangjl@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375248).
    [1]

    Wu Z W, Huang T K, Liu X Y, Ling W Y L, Wang N F, Ji L C 2020 Plasma Sci. Technol. 22 094014Google Scholar

    [2]

    Northway P 2020 Ph. D. Dissertation (Washington: University of Washington

    [3]

    Lev D, Myers R M, Lemmer K M, Kolbeck J, Koizumi H, Polzin K 2019 Acta Astronaut. 159 213Google Scholar

    [4]

    吴建军, 胡泽君, 张宇, 何志成, 欧阳, 郑鹏, 赵元政, 李宇奇 2023 推进技术 44 11Google Scholar

    Wu J J, Hu Z J, Zhang Y, He Z C, Ou Y, Zheng P, Zhao Y Z, Li Y Q 2023 J. Propul. Technol. 44 11Google Scholar

    [5]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schönherr T, Komurasaki K 2011 the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 p1

    [6]

    Spanjers G, McFall K, Gulczinski F, Spores R 1996 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Lake Buena Vista, July 1–3, 1996 p2723

    [7]

    Koizumi H, Noji R, Komurasaki K, Arakawa Y 2007 Phys. Plasmas 14 033506Google Scholar

    [8]

    Gomez E W, Saravia M M, Castelló W B, Elaskar S 2022 8th International Conference on Space Propulsion ESTORIL, May 9–13, 2022 p00203

    [9]

    Antropov N, Diakonov G, Orlov M, Popov G, Yakovlev V 2003 28th International Electric Propulsion Conference Paper Toulouse, March 17–21 2003 p3

    [10]

    Schönherr T, Nawaz A, Herdrich G, Röser H P, Auweter-Kurtz M 2009 J. Propul. Power 25 380Google Scholar

    [11]

    Palumbo D J, Guman W J 1976 J. Spacecraft Rockets 13 163Google Scholar

    [12]

    Ling W Y L, Zhang S, Fu H, Huang M C, Quansah J, Liu X Y, Wang N F 2020 Chin. J. Aeronaut. 33 2999Google Scholar

    [13]

    Ou Y, Wu J J, Du X R, Zhang H, He Z F 2019 Vacuum 165 163Google Scholar

    [14]

    Spanjers G G, Lotspeich J S, McFall K A, Spores R A 1998 J. Propul. Power 14 554Google Scholar

    [15]

    Schönherr T, Komurasaki K, Herdrich G 2013 J. Propul. Power 29 1478Google Scholar

    [16]

    Zeng L H, Wu Z W, Sun G R, Huang T K, Xie K, Wang N F 2019 Acta Astronaut. 160 317Google Scholar

    [17]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [18]

    Wu Z W, Sun G R, Huang T K, Liu X, Xie K, Wang N F 2018 AIAA J. 56 3024Google Scholar

    [19]

    Jahn R G 1968 Physics of Electric Propulsion (New York: McGraw-Hill) p263

    [20]

    Turchi P, Mikellides P 1995 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, July 10–12, 1995 p1

    [21]

    Gatsonis N A, Hastings D E 1992 J. Geophys. Res.-Space 97 14989Google Scholar

    [22]

    Vondra R J, Thomassen K, Solbes A 1970 J. Spacecraft Rockets 7 1402Google Scholar

    [23]

    魏荣华 1982 空间科学学报 2 319Google Scholar

    Wei R H 1982 Chin. J. Space Sci. 2 319Google Scholar

    [24]

    Laperriere D, Gatsonis N, Demetriou M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, July 10–13, 2005 p4077

    [25]

    Gatsonis N, Demetriou M 2004 40st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Florida, July 11–14, 2004 p3464

    [26]

    Laperriere D D 2005 M. S. Thesis (Massachusetts: Worcester Polytechnic Institute

    [27]

    Ou Y, Wu J J, Zhang Y, Li J, Tan S 2018 Energies 11 1146Google Scholar

    [28]

    张华, 吴建军, 张代贤, 张锐, 何振 2013 62 210202Google Scholar

    Zhang H, Wu J J, Zhang D X, Zhang R, He Z 2013 Acta Phys. Sin. 62 210202Google Scholar

    [29]

    Mikellides Y G 1999 Theoretical Modeling and Optimization of Ablation-fed Pulsed Plasma Thrusters (The Ohio State University

    [30]

    Mikellides P G, Henrikson E M, Rajagopalan S S 2019 J. Propul. Power 35 811Google Scholar

    [31]

    Keidar M, Boyd I D, Beilis I I 2003 J. Propul. Power 19 424Google Scholar

    [32]

    Keidar M, Boyd I 2002 38st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, July 7–10, 2002 p4275

    [33]

    Yang L, Huang Y, Tang H, Liu X 2015 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, July 4–10, 2015 p1

    [34]

    Yang L, Liu X Y, Wu Z W, Wang N F 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, USA, July 31–August 3, 2011 p6077

    [35]

    Riazantsev A, Jakubczak M, Kurzyna J 2024 38th International Electric Propulsion Conference Toulouse, June 23–28, 2024 p1

    [36]

    Schönherr T, Nawaz A, Lau M, Petkow D, Herdrich G 2010 Trans. JSASS Aerospace Tech. Japan 8 Tb_11Google Scholar

    [37]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [38]

    王尚民, 田立成, 张家良, 张天平, 冯玮玮, 陈新伟, 高军 2017 中国空间科学技术 37 24Google Scholar

    Wang S M, Tian L C, Zhang J L, Zhang T P, Feng W W, Chen W X, Gao J 2017 Chin. Space Sci. Technol. 37 24Google Scholar

  • 图 1  基本PPT机-电模型等效电路示意图

    Fig. 1.  Equivalent circuit schematic of primary PPT electromechanical model.

    图 2  二维薄电流片及机-电模型电路示意图

    Fig. 2.  Circuit schematic of the improved electromechanical model with 2D thin current sheet.

    图 3  PPT实验装置示意图

    Fig. 3.  Schematic of PPT experimental setup.

    图 4  典型PPT放电电流波形及其数值滤波、对比拟合效果 (a) 原始电流波形及滤波效果; (b) 电流波形的不同拟合效果对比

    Fig. 4.  A typical current waveform and its numerical filtering and fitting: (a) Measured and filtered waveforms; (b) current waveform fittings with different scheme.

    图 5  PPT波形的分段拟合区间划分及仿真效果 (a) 分段拟合区间的划分示意图; (b) 波形的分段拟合效果; (c) 波形的仿真效果

    Fig. 5.  Segmentation and the simulation outcome of PPT waveform: (a) Fitting segments; (b) segmental fitted waveform; (c) simulated waveform.

    图 6  PPT放电回路的时变特性 (a) 6次PPT回路电感数据; (b) 6次PPT回路电阻数据; (c) 电感二次式拟合效果; (d) 电阻二次式拟合效果

    Fig. 6.  Temporal variance of PPT circuit inductance during discharge: (a) Inductive data for 6 PPT discharges; (b) resistance data for 6 PPT discharges; (c) inductive fitting with a quadratic function; (d) resistance fitting with a quadratic function.

    图 7  基于改进PPT机-电模型计算的电磁加速动能

    Fig. 7.  Electromagnetic kinetic energy calculated with the improved PPT electromechanical model.

    图 8  PPT机-电效率随工况参数的变化

    Fig. 8.  Electromechanical efficiency with operation conditions of PPT.

    图 9  PPT放电电压、电流、瞬时功率和能量沉积的典型波形($ {E}_{{\mathrm{q}}} $, 快沉积能量; $ {E}_{{\mathrm{s}}} $, 慢沉积能量)

    Fig. 9.  Typical waveforms of PPT discharge voltage, current, power and energy deposition ($ {E}_{{\mathrm{q}}} $, quick deposition energy; $ {E}_{{\mathrm{s}}} $, slow deposition energy).

    图 10  不同工况PPT放电的能量注入分配 (a)快沉积能量与慢沉积能量; (b)慢沉积能量占比

    Fig. 10.  Energy deposition for PPT discharges with different operation conditions: (a) Quick ($ {E}_{{\mathrm{q}}}) $ and slow ($ {E}_{{\mathrm{s}}}) $deposition energy; (b) ratio of slow deposition energy.

    Baidu
  • [1]

    Wu Z W, Huang T K, Liu X Y, Ling W Y L, Wang N F, Ji L C 2020 Plasma Sci. Technol. 22 094014Google Scholar

    [2]

    Northway P 2020 Ph. D. Dissertation (Washington: University of Washington

    [3]

    Lev D, Myers R M, Lemmer K M, Kolbeck J, Koizumi H, Polzin K 2019 Acta Astronaut. 159 213Google Scholar

    [4]

    吴建军, 胡泽君, 张宇, 何志成, 欧阳, 郑鹏, 赵元政, 李宇奇 2023 推进技术 44 11Google Scholar

    Wu J J, Hu Z J, Zhang Y, He Z C, Ou Y, Zheng P, Zhao Y Z, Li Y Q 2023 J. Propul. Technol. 44 11Google Scholar

    [5]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schönherr T, Komurasaki K 2011 the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 p1

    [6]

    Spanjers G, McFall K, Gulczinski F, Spores R 1996 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Lake Buena Vista, July 1–3, 1996 p2723

    [7]

    Koizumi H, Noji R, Komurasaki K, Arakawa Y 2007 Phys. Plasmas 14 033506Google Scholar

    [8]

    Gomez E W, Saravia M M, Castelló W B, Elaskar S 2022 8th International Conference on Space Propulsion ESTORIL, May 9–13, 2022 p00203

    [9]

    Antropov N, Diakonov G, Orlov M, Popov G, Yakovlev V 2003 28th International Electric Propulsion Conference Paper Toulouse, March 17–21 2003 p3

    [10]

    Schönherr T, Nawaz A, Herdrich G, Röser H P, Auweter-Kurtz M 2009 J. Propul. Power 25 380Google Scholar

    [11]

    Palumbo D J, Guman W J 1976 J. Spacecraft Rockets 13 163Google Scholar

    [12]

    Ling W Y L, Zhang S, Fu H, Huang M C, Quansah J, Liu X Y, Wang N F 2020 Chin. J. Aeronaut. 33 2999Google Scholar

    [13]

    Ou Y, Wu J J, Du X R, Zhang H, He Z F 2019 Vacuum 165 163Google Scholar

    [14]

    Spanjers G G, Lotspeich J S, McFall K A, Spores R A 1998 J. Propul. Power 14 554Google Scholar

    [15]

    Schönherr T, Komurasaki K, Herdrich G 2013 J. Propul. Power 29 1478Google Scholar

    [16]

    Zeng L H, Wu Z W, Sun G R, Huang T K, Xie K, Wang N F 2019 Acta Astronaut. 160 317Google Scholar

    [17]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [18]

    Wu Z W, Sun G R, Huang T K, Liu X, Xie K, Wang N F 2018 AIAA J. 56 3024Google Scholar

    [19]

    Jahn R G 1968 Physics of Electric Propulsion (New York: McGraw-Hill) p263

    [20]

    Turchi P, Mikellides P 1995 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, July 10–12, 1995 p1

    [21]

    Gatsonis N A, Hastings D E 1992 J. Geophys. Res.-Space 97 14989Google Scholar

    [22]

    Vondra R J, Thomassen K, Solbes A 1970 J. Spacecraft Rockets 7 1402Google Scholar

    [23]

    魏荣华 1982 空间科学学报 2 319Google Scholar

    Wei R H 1982 Chin. J. Space Sci. 2 319Google Scholar

    [24]

    Laperriere D, Gatsonis N, Demetriou M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, July 10–13, 2005 p4077

    [25]

    Gatsonis N, Demetriou M 2004 40st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Florida, July 11–14, 2004 p3464

    [26]

    Laperriere D D 2005 M. S. Thesis (Massachusetts: Worcester Polytechnic Institute

    [27]

    Ou Y, Wu J J, Zhang Y, Li J, Tan S 2018 Energies 11 1146Google Scholar

    [28]

    张华, 吴建军, 张代贤, 张锐, 何振 2013 62 210202Google Scholar

    Zhang H, Wu J J, Zhang D X, Zhang R, He Z 2013 Acta Phys. Sin. 62 210202Google Scholar

    [29]

    Mikellides Y G 1999 Theoretical Modeling and Optimization of Ablation-fed Pulsed Plasma Thrusters (The Ohio State University

    [30]

    Mikellides P G, Henrikson E M, Rajagopalan S S 2019 J. Propul. Power 35 811Google Scholar

    [31]

    Keidar M, Boyd I D, Beilis I I 2003 J. Propul. Power 19 424Google Scholar

    [32]

    Keidar M, Boyd I 2002 38st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, July 7–10, 2002 p4275

    [33]

    Yang L, Huang Y, Tang H, Liu X 2015 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, July 4–10, 2015 p1

    [34]

    Yang L, Liu X Y, Wu Z W, Wang N F 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, USA, July 31–August 3, 2011 p6077

    [35]

    Riazantsev A, Jakubczak M, Kurzyna J 2024 38th International Electric Propulsion Conference Toulouse, June 23–28, 2024 p1

    [36]

    Schönherr T, Nawaz A, Lau M, Petkow D, Herdrich G 2010 Trans. JSASS Aerospace Tech. Japan 8 Tb_11Google Scholar

    [37]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [38]

    王尚民, 田立成, 张家良, 张天平, 冯玮玮, 陈新伟, 高军 2017 中国空间科学技术 37 24Google Scholar

    Wang S M, Tian L C, Zhang J L, Zhang T P, Feng W W, Chen W X, Gao J 2017 Chin. Space Sci. Technol. 37 24Google Scholar

  • [1] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源.  , 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响.  , 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道.  , 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [4] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验.  , 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [5] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道研究.  , 2021, (): . doi: 10.7498/aps.70.20211495
    [6] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究.  , 2021, (): . doi: 10.7498/aps.70.20211425
    [7] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响.  , 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [8] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究.  , 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [9] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器.  , 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [10] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [11] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究.  , 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [12] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响.  , 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [13] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型.  , 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [14] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究.  , 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [15] 石雁祥, 吴健, 葛德彪. 弱电离尘埃等离子体的介电张量研究.  , 2009, 58(8): 5507-5512. doi: 10.7498/aps.58.5507
    [16] 陶卫东, 王 标. 一种改进型菲涅尔棱体的设计与分析.  , 2006, 55(3): 1126-1129. doi: 10.7498/aps.55.1126
    [17] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [18] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量.  , 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [19] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验.  , 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
    [20] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理.  , 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
计量
  • 文章访问数:  451
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-10
  • 修回日期:  2024-09-25
  • 上网日期:  2024-10-08
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map