搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦原子精密光谱实验中的精密磁场设计与测量

冯高平 孙羽 郑昕 胡水明

引用本文:
Citation:

氦原子精密光谱实验中的精密磁场设计与测量

冯高平, 孙羽, 郑昕, 胡水明

Design and measurement of a magnetic field for precision spectroscopy of helium

Feng Gao-Ping, Sun Yu, Zheng Xin, Hu Shui-Ming
PDF
导出引用
  • 在很多精密原子光谱实验中,杂散磁场或者磁场强度的不均匀所引入的系统误差,是影响实验不确定度的主要因素之一. 为保证测量精度,必须实现精密的磁场控制. 氦原子精细结构的精密光谱测量可用于测定精细结构常数,同时也是检验多电子原子体系量子电动力学理论的一种重要方法. 本文介绍所设计制作的磁屏蔽系统和余弦线圈产生精密可控磁场,并利用He原子光谱对所加磁场进行了精密测定. 磁屏蔽结构可将外磁场降低到小于0.8 mGs(1 Gs=10-4 T),控制磁场在20 Gs 范围内时,光谱测量区域磁场的不均匀性和控制误差均小于10 mGs. 在此实验条件下,氦原子精细结构精密光谱测量中磁场所导致的系统误差小于0.2 kHz.
    Systematic error caused by stray magnetic fields is often one of the major sources of the uncertainties in many precision measurements. It is necessary to accurately control the magnetic fields in these measurements. The spectrum of the fine structure of helium can be used to determine the fine structure constant, and also to test the quantum electrodynamic theory of multi-electron systems. In this work, we present a magnetic shield that can eliminate stray magnetic fields and a cosine coil that generates a uniform magnetic field. The central magnetic strength produced by the coil is measured through the spectrum of a 4He metastable atomic beam. The magnetic shield reduces the strength of the external magnetic field down to less than 0.8 mGs. The variation of the magnetic strength in the spectrum region is less than 10 mGs at a magnetic strength up to 20 Gs. In this case, the uncertainty introduced by the magnetic field will be less than in the spectrum of helium fine structure.
    • 基金项目: 国家自然科学基金(批准号:11304303,21225314)、中国博士后科学基金(批准号:2013M541828)和中央高校基本科研业务费(批准号:WK2340000042)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304303, 21225314), the China Postdoctoral Science Foundation (Grant No. 2013M541828), and the Fundamental Research Fund for the Central Universities, China (Grant No. WK2340000042).
    [1]

    Schwartz C 1964 Phys. Rev. 134 A1181

    [2]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [3]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002

    [4]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001

    [5]

    Hanneke D, Hoogerheide S F, Gabrielse G 2011 Phys. Rev. A 83 052122

    [6]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002

    [7]

    Lach G, Pachucki K 2001 Phys. Rev. A 64 042510

    [8]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001

    [9]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2006 Phys. Rev. Lett. 97 139903

    [10]

    Giusfredi G, Pastor P C, Natale P D, Mazzotti D, Mauro C D, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301

    [11]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002

    [12]

    Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W, Hessels E A 2009 Phys. Rev. A 79 060503(R)

    [13]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001

    [14]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321

    [15]

    Keyser A R, Rice J A, Schearer L D 1961 J. Geophys. Res. 66 4163

    [16]

    Gravrand O, Khokhlov A, Mouel J L L, Leger J M 2001 Earth Planets Space 53 949

    [17]

    Frandsen A M A, Conner B V, Amersfoort J V, Smith E J 1978 IEEE Trans. Geosci. Electron. GE-16 195

    [18]

    Magnes W, Michelena M D 2009 IEEE Trans. Geosci. Electron. 45 4493

    [19]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [20]

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601 (in Chinese) [孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 61 170601]

    [21]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [22]

    Black E D 2001 Am. J. Phys. 69 79

    [23]

    Mager A J 1970 IEEE Trans. Magnet. MAG-6 67

    [24]

    Gubser D U, Wolf S A, Cox J E 1979 Rev. Sci. Instrum. 50 751

    [25]

    Sumner T J, Pendlebury J M, Smith K F 1987 J. Phys. D: Appl. Phys. 20 1095

    [26]

    Burt E A, Ekstrom C R 2002 Rev. Sci. Instrum. 73 2699

    [27]

    Calvo E, Cerrada M, Botella I G, Palomares C, Rodriguez I, Toral F, Verdugo A 2009 Nucl. Instrum. Methods Phys. Res. A 600 560

    [28]

    Cui Y R, Liu H, Shi Y, Li X M, Ma H Z 2005 Foundry Technol. 26 1145 (in Chinese) [崔雅茹, 刘环, 施源, 李小明, 马红周 2005 铸造技术 26 1145]

    [29]

    Li C J 2000 Southern Iron and Steel 116 7 (in Chinese) [李晨隽 2000 南方钢铁 116 7]

    [30]

    Chen G J, Li M C, Zhou Y L 1986 Metal Soft Magnetic Materials and Heat Treatment (Beijing: China Machine Press) p47 (in Chinese) [陈国钧, 李茂昌, 周元龙 1986 金属软磁材料及其热处理 (北京: 机械工业出版社) 第47页]

    [31]

    Shi J J, Dai Z Y, Xie L 2000 High Power Laser and Particle Beams 12 635 (in Chinese) [施将君, 戴志勇, 谢龙 2000 强激光与粒子束 12 635]

    [32]

    Tang B, Jelicks L A 2001 Proc. Intl. Soc. Mag. Reson. Med 9 1110

    [33]

    Lewis M L, Hughes V W 1973 Phys. Rev. A 8 2845

    [34]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980

    [35]

    Clairon A, Laurent P, Santarelli G, Ghezali S, Lea S N, Bahoura M 1995 IEEE Trans. Instrum. Meas. 44 128

    [36]

    Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505

    [37]

    Swallows M D, Loftus T H, Griffith W C, Heckel B R, Fortson E N, Romalis M V 2013 Phys. Rev. A 87 012102

    [38]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

  • [1]

    Schwartz C 1964 Phys. Rev. 134 A1181

    [2]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [3]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002

    [4]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001

    [5]

    Hanneke D, Hoogerheide S F, Gabrielse G 2011 Phys. Rev. A 83 052122

    [6]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002

    [7]

    Lach G, Pachucki K 2001 Phys. Rev. A 64 042510

    [8]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001

    [9]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2006 Phys. Rev. Lett. 97 139903

    [10]

    Giusfredi G, Pastor P C, Natale P D, Mazzotti D, Mauro C D, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301

    [11]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002

    [12]

    Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W, Hessels E A 2009 Phys. Rev. A 79 060503(R)

    [13]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001

    [14]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321

    [15]

    Keyser A R, Rice J A, Schearer L D 1961 J. Geophys. Res. 66 4163

    [16]

    Gravrand O, Khokhlov A, Mouel J L L, Leger J M 2001 Earth Planets Space 53 949

    [17]

    Frandsen A M A, Conner B V, Amersfoort J V, Smith E J 1978 IEEE Trans. Geosci. Electron. GE-16 195

    [18]

    Magnes W, Michelena M D 2009 IEEE Trans. Geosci. Electron. 45 4493

    [19]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [20]

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601 (in Chinese) [孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 61 170601]

    [21]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [22]

    Black E D 2001 Am. J. Phys. 69 79

    [23]

    Mager A J 1970 IEEE Trans. Magnet. MAG-6 67

    [24]

    Gubser D U, Wolf S A, Cox J E 1979 Rev. Sci. Instrum. 50 751

    [25]

    Sumner T J, Pendlebury J M, Smith K F 1987 J. Phys. D: Appl. Phys. 20 1095

    [26]

    Burt E A, Ekstrom C R 2002 Rev. Sci. Instrum. 73 2699

    [27]

    Calvo E, Cerrada M, Botella I G, Palomares C, Rodriguez I, Toral F, Verdugo A 2009 Nucl. Instrum. Methods Phys. Res. A 600 560

    [28]

    Cui Y R, Liu H, Shi Y, Li X M, Ma H Z 2005 Foundry Technol. 26 1145 (in Chinese) [崔雅茹, 刘环, 施源, 李小明, 马红周 2005 铸造技术 26 1145]

    [29]

    Li C J 2000 Southern Iron and Steel 116 7 (in Chinese) [李晨隽 2000 南方钢铁 116 7]

    [30]

    Chen G J, Li M C, Zhou Y L 1986 Metal Soft Magnetic Materials and Heat Treatment (Beijing: China Machine Press) p47 (in Chinese) [陈国钧, 李茂昌, 周元龙 1986 金属软磁材料及其热处理 (北京: 机械工业出版社) 第47页]

    [31]

    Shi J J, Dai Z Y, Xie L 2000 High Power Laser and Particle Beams 12 635 (in Chinese) [施将君, 戴志勇, 谢龙 2000 强激光与粒子束 12 635]

    [32]

    Tang B, Jelicks L A 2001 Proc. Intl. Soc. Mag. Reson. Med 9 1110

    [33]

    Lewis M L, Hughes V W 1973 Phys. Rev. A 8 2845

    [34]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980

    [35]

    Clairon A, Laurent P, Santarelli G, Ghezali S, Lea S N, Bahoura M 1995 IEEE Trans. Instrum. Meas. 44 128

    [36]

    Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505

    [37]

    Swallows M D, Loftus T H, Griffith W C, Heckel B R, Fortson E N, Romalis M V 2013 Phys. Rev. A 87 012102

    [38]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

  • [1] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流.  , 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [2] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数.  , 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [3] 赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪. 阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响.  , 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [4] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响.  , 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [5] 李辉, 江敏, 朱振南, 徐文杰, 徐旻翔, 彭新华. 铷-氙气室原子磁力仪系统磁场测量能力的标定.  , 2019, 68(16): 160701. doi: 10.7498/aps.68.20190868
    [6] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究.  , 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [7] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [8] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量.  , 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [9] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应.  , 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [10] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [11] 陈笋, 朱云霞, 葛自明, 贺黎明. 钠原子主线系精细结构的多体微扰计算.  , 2012, 61(15): 153104. doi: 10.7498/aps.61.153104
    [12] 孙言, 苟秉聪, 朱婧晶. Li“洞原子”高位三激发态2 S(m)和2 D(m) (m=2—7)的能级、精细结构和Auger宽度.  , 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [13] 马怡培, 贺黎明, 张孟, 朱云霞. 钠原子nd高Rydberg系列能级精细结构的计算研究.  , 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [14] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正.  , 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [15] 吕海萍, 殷春浩, 魏雪松, 钮应喜, 宋 宁, 茹瑞鹏. LiNbO3∶Fe3+晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应.  , 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [16] 殷春浩, 焦 杨, 张 雷, 宋 宁, 茹瑞鹏, 杨 柳. CsNiCl3晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应.  , 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [17] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] 朱云霞, 贺黎明, 曹 伟, 葛自明. 氦原子Rydberg态10G—10M磁精细结构的计算.  , 2005, 54(11): 5082-5088. doi: 10.7498/aps.54.5082
    [19] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构.  , 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究.  , 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  7450
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-03-08
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map