Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy

Zheng Pei-Chao Li Xiao-Juan Wang Jin-Mei Zheng Shuang Zhao Huai-Dong

Citation:

Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy

Zheng Pei-Chao, Li Xiao-Juan, Wang Jin-Mei, Zheng Shuang, Zhao Huai-Dong
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Coptidis plays an important role in the field of traditional Chinese medicine. However, it is easily polluted by heavy metals in environment (water and soil), and thus can affect human health. In order to detect the heavy metal elements Cu and Pb in Coptidis, which was purchased from the Chinese herbal medicine market in Chongqing, the reheated double-pulse laser-induced breakdown spectroscopy (RDP-LIBS) is investigated. In order to reduce the experimental error caused by the irregular shape, it is necessary to pretreat the Coptidis samples prior to the determination step. The Coptidis samples are dried, milled, and sieved to form thin cylindrical tablets each with a diameter of 13 mm and thickness of 2 mm, which are formed under a mechanical press of 10 MPa for 2 min. The influences of the main experimental parameters, such as double-pulse LIBS detection delay, double-pulse LIBS laser energy, and double-pulse LIBS pulse interval are optimized. According to the LIBS signal intensity and signal-to-background ratio, the optimal laser energy set of the characteristic line Cu I (324.46 nm) covers E1 = 15 mJ and E2 = 35 mJ, and the pulse interval and detection delay time are 1.4 μs and 1.5 μs respectively; the laser energy set of Pb I (405.78 nm) also covers E1 = 15 mJ and E2 = 35 mJ, and the pulse interval and detection delay time are 1.6 μs and 1.7 μs, respectively. Comparing with the scenarios of single-pulse laser-induced breakdown spectroscopy, it can be seen that the spectral intensity of Cu I (324.46 nm) increases from 5779 counts to 12749 counts, i.e. it increases about 2.2 times; the spectral intensity of Pb I (405.78 nm) characteristic line increases from 4703 counts to 15838 counts, i.e. it increases about 3.3 times. It is shown that the second laser pulse re-excites the plasma which is generated by the first laser pulse, thus making the plasma emission spectrum stronger. The detection performances of heavy metal elements in Chinese medicinal materials are evaluated by RDP-LIBS and SP-LIBS. The results show that the detection limit of Cu decreases from 5.13 mg/kg to 1.91 mg/kg, and the detection limit of Pb decreases from 10.87 mg/kg to 3.03 mg/kg. There was observed a noticeable difference in the limit of detection between Cu and Pb, which meets the requirements of the Green Industry Standard for Import and Export of Medicinal Plants. Moreover, the linear curve fitting degree of RDP-LIBS is higher than that of SP-LIBS, which indicates that the RDP-LIBS technology has better detection performance in Chinese herbal medicine.
      Corresponding author: Wang Jin-Mei, wangjm@cqupt.edu.cn
    [1]

    Yuan X D, Ling K W, Keuing C W 2009 Phytochem. Anal. 20 293Google Scholar

    [2]

    Arpadjan S, Celik G, Taşkesen S, Gucer S 2008 Food Chem. Toxicol. 46 2871Google Scholar

    [3]

    Zhang X H, Li H, Qin K M, Cai H, Liu X, Zheng L J, Gu J, Cai B C 2014 Anal. Lett. 47 1589Google Scholar

    [4]

    Guo Y M, Deng L M, Yang X Y, Li J M 2017 J. Anal. Atom. Spectrom. 32 2401Google Scholar

    [5]

    Zhu Z H, Li J M, Guo Y M, Cheng X, Tang Y, Guo L B, Li, X Y, Li, X Y, Lu Y F, Zeng, X Y, 2017 J. Anal. Atom. Spectrom. 32 205Google Scholar

    [6]

    Zheng P C, Liu H D, Wang J M, Shi M J, Wang X M, Zhang B, Yang R 2015 J. Anal. Atom. Spectrom. 30 867Google Scholar

    [7]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [8]

    Wang J M, Shi M J, Zheng P C 2017 J. Appl. Spectrosc. 84 188Google Scholar

    [9]

    Wang J M, Xue S W, Zheng P C, Chen Y Y, Peng R 2017 Anal. Lett. 50 2000Google Scholar

    [10]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [11]

    Wang Q Q, Liu K, Zhao H 2012 Chin. Phys. Lett. 29 044206Google Scholar

    [12]

    刘晓娜, 史新元, 贾帅芸, 赵娜, 吴志生, 乔延江 2015 中国中药杂志 40 2239

    Liu X N, Shi X Y, Jia S Y, Zhao N, Wu Z S, Qiao Y J 2015 China J. Chin. Mater. Med. 40 2239

    [13]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 红外与激光工程 45 1006003

    Li Z F, Wang R W, Deng H 2016 Infrared Laser Eng. 45 1006003

    [14]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 发光学报 37 100

    Li Z F, Wang R W, Deng H, Shang L P 2016 Chin. J. Lumin. 37 100

    [15]

    Wang J M, Liao X Y, Zheng P C, Xue S W, Peng R 2018 Anal. Lett. 51 575Google Scholar

    [16]

    Skrodzki P J, Becker J R, Diwakar P K, Harilal S S, Hassanein A 2016 Appl. Spectrosc. 70 467Google Scholar

    [17]

    Lei W Q, Motto-Ros V, Boueri M, Ma Q L, Zheng L J, Zeng H P, Yu J 2009 Spectrochim. Acta B 64 891Google Scholar

    [18]

    Wang Z Z, Deguchi Y, Liu R W, Ikutomo A, Zhang Z Z, Chong D T, Yan J P, Shiou F J 2017 Appl. Spectrosc. 71 2187Google Scholar

    [19]

    St-Onge L, Detalle V, Sabsabi M 2002 Spectrochim. Acta B 57 121Google Scholar

    [20]

    Ahmed R, Iqbal J, Baig M A 2015 Laser Phys. Lett. 12 066102Google Scholar

    [21]

    王金梅, 郑慧娟, 郑培超, 谭癸宁 2018 中国激光 45 0702006

    Wang J M, Zheng H J, Zheng P C, Tan G N 2018 Chin. J. Lasers 45 0702006

    [22]

    Yu J, Ma Q, Mottoros V, Lei W Q, Wang X C, Bai X S 2012 Front Phys.-Beijing 7 649Google Scholar

    [23]

    余洋, 赵南京, 方丽, 孟德硕, 谷艳红, 王园园, 贾尧, 马明俊, 刘建国, 刘文清 2017 光谱学与光谱分析 37 588

    Yu Y, Zhao N J, Fang L, Meng D S, Gu Y H, Wang Y Y, Jia Y, Ma M J, Liu J G, Liu W Q 2017 Spectrosc. Spect. Anal. 37 588

    [24]

    de Giacomo A, Dell'Aglio M, Bruno D, Gaudiuso R, de Pascale O 2008 Spectrochim. Acta B 63 805Google Scholar

    [25]

    Song C, Gao X, Shao Y 2016 Optik 127 3979Google Scholar

  • 图 1  正交RDP-LIBS实验装置

    Figure 1.  Schematic diagram of the experimental setup for orthogonal re-heating DP-LIBS.

    图 2  黄连样品

    Figure 2.  Coptidis Chinensis samples.

    图 3  光谱强度和信噪比随探测延时的变化规律

    Figure 3.  Evolutions of spectral intensity and signal-to-noise ratio (SNR) at different delay times.

    图 4  光谱强度随激光能量的变化

    Figure 4.  Variation of spectral intensity in different energy groups.

    图 5  光谱强度和信噪比随脉冲间隔的变化

    Figure 5.  Variations of signal intensity and SNR as a function of pulse interval time

    图 6  SP-LIBS和RDP-LIBS光谱强度对比

    Figure 6.  Comparison of spectral intensity between SP-LIBS and RDP-LIBS

    图 7  SP-LIBS和RDP-LIBS下Cu, Pb元素定标曲线拟合图

    Figure 7.  Linear fitting curves of Cu and Pb in SP-LIBS and RDP-LIBS.

    表 1  特征谱线的检测限(LOD)和线性拟合度(R2)对比

    Table 1.  Comparison of detection limits and relative standard deviations of characteristic lines.

    特征谱线
    Cu I 324.46 nmPb I 405.78 nm
    LOD/mg·kg–1SP-LIBS5.1310.87
    RDP-LIBS1.913.03
    GB/T 5009205
    R2SP-LIBS0.97380.9287
    RDP-LIBS0.99310.9926
    DownLoad: CSV

    表 2  Cu和Pb检测能力对比

    Table 2.  Comparison of detection ability between Cu and Pb.

    元素
    误差分析Cu Pb
    实际值/mg·kg–1测量值/mg·kg–1相对误差/%精密度/% 实际值/mg·kg–1测量值/mg·kg–1相对误差/%精密度/%
    SP-LIBS8067.715.49.8 800638.320.25.4
    300244.418.57.6 64007163.511.94.2
    RDP-LIBS8069.513.17.8 800693.913.23.6
    300323.57.73.1 64005936.47.23.8
    DownLoad: CSV
    Baidu
  • [1]

    Yuan X D, Ling K W, Keuing C W 2009 Phytochem. Anal. 20 293Google Scholar

    [2]

    Arpadjan S, Celik G, Taşkesen S, Gucer S 2008 Food Chem. Toxicol. 46 2871Google Scholar

    [3]

    Zhang X H, Li H, Qin K M, Cai H, Liu X, Zheng L J, Gu J, Cai B C 2014 Anal. Lett. 47 1589Google Scholar

    [4]

    Guo Y M, Deng L M, Yang X Y, Li J M 2017 J. Anal. Atom. Spectrom. 32 2401Google Scholar

    [5]

    Zhu Z H, Li J M, Guo Y M, Cheng X, Tang Y, Guo L B, Li, X Y, Li, X Y, Lu Y F, Zeng, X Y, 2017 J. Anal. Atom. Spectrom. 32 205Google Scholar

    [6]

    Zheng P C, Liu H D, Wang J M, Shi M J, Wang X M, Zhang B, Yang R 2015 J. Anal. Atom. Spectrom. 30 867Google Scholar

    [7]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [8]

    Wang J M, Shi M J, Zheng P C 2017 J. Appl. Spectrosc. 84 188Google Scholar

    [9]

    Wang J M, Xue S W, Zheng P C, Chen Y Y, Peng R 2017 Anal. Lett. 50 2000Google Scholar

    [10]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [11]

    Wang Q Q, Liu K, Zhao H 2012 Chin. Phys. Lett. 29 044206Google Scholar

    [12]

    刘晓娜, 史新元, 贾帅芸, 赵娜, 吴志生, 乔延江 2015 中国中药杂志 40 2239

    Liu X N, Shi X Y, Jia S Y, Zhao N, Wu Z S, Qiao Y J 2015 China J. Chin. Mater. Med. 40 2239

    [13]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 红外与激光工程 45 1006003

    Li Z F, Wang R W, Deng H 2016 Infrared Laser Eng. 45 1006003

    [14]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 发光学报 37 100

    Li Z F, Wang R W, Deng H, Shang L P 2016 Chin. J. Lumin. 37 100

    [15]

    Wang J M, Liao X Y, Zheng P C, Xue S W, Peng R 2018 Anal. Lett. 51 575Google Scholar

    [16]

    Skrodzki P J, Becker J R, Diwakar P K, Harilal S S, Hassanein A 2016 Appl. Spectrosc. 70 467Google Scholar

    [17]

    Lei W Q, Motto-Ros V, Boueri M, Ma Q L, Zheng L J, Zeng H P, Yu J 2009 Spectrochim. Acta B 64 891Google Scholar

    [18]

    Wang Z Z, Deguchi Y, Liu R W, Ikutomo A, Zhang Z Z, Chong D T, Yan J P, Shiou F J 2017 Appl. Spectrosc. 71 2187Google Scholar

    [19]

    St-Onge L, Detalle V, Sabsabi M 2002 Spectrochim. Acta B 57 121Google Scholar

    [20]

    Ahmed R, Iqbal J, Baig M A 2015 Laser Phys. Lett. 12 066102Google Scholar

    [21]

    王金梅, 郑慧娟, 郑培超, 谭癸宁 2018 中国激光 45 0702006

    Wang J M, Zheng H J, Zheng P C, Tan G N 2018 Chin. J. Lasers 45 0702006

    [22]

    Yu J, Ma Q, Mottoros V, Lei W Q, Wang X C, Bai X S 2012 Front Phys.-Beijing 7 649Google Scholar

    [23]

    余洋, 赵南京, 方丽, 孟德硕, 谷艳红, 王园园, 贾尧, 马明俊, 刘建国, 刘文清 2017 光谱学与光谱分析 37 588

    Yu Y, Zhao N J, Fang L, Meng D S, Gu Y H, Wang Y Y, Jia Y, Ma M J, Liu J G, Liu W Q 2017 Spectrosc. Spect. Anal. 37 588

    [24]

    de Giacomo A, Dell'Aglio M, Bruno D, Gaudiuso R, de Pascale O 2008 Spectrochim. Acta B 63 805Google Scholar

    [25]

    Song C, Gao X, Shao Y 2016 Optik 127 3979Google Scholar

Metrics
  • Abstract views:  8768
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2019
  • Accepted Date:  09 April 2019
  • Available Online:  06 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map