Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology

Zhao Han-Yu Cao Shi-Ying Dai Shao-Yang Yang Tao Zuo Ya-Ni Hu Ming-Lie

Citation:

Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology

Zhao Han-Yu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie
PDF
HTML
Get Citation
  • The iodine frequency stabilized 532 nm Nd:YAG laser plays an important role in realizing the reproduction unit of length “meter (m)”, absolute gravity measurement, gravitational waves detection, precision spectroscopy, distance metrology, etc. Absolute frequency measurement and calibration of the laser are of great significance for evaluating the performance of laser. The previous method of extending the erbium-doped fiber optical frequency comb (Er-FOFC) to the wavelength of 532 nm was to first amplify the seed light, then realize frequency-doubled with a periodic polarization lithium niobate crystal, and finally couple it into a photonic crystal fiber to expand the spectrum to the 532 nm band. With such a technique, the a signal-to-noise ratio (SNR) of the beat signal between the iodine-stabilized 532 nm Nd:YAG laser and the Er-FOFC was approximately 30 dB. Moreover, the SNR of the beat signal was unstable, resulting in the errors in frequency measurement with a counter. This is not conducive to the long-term frequency measurement of the iodine-stabilized 532 nm Nd:YAG laser. Therefore, a method that can obtain both high SNR and long-term stable beat signals is required. In this paper, an Er-FOFC is developed. The spectral enhancement of its broadening at 1 μm is carried out, and then expanded to the wavelength at 532 nm by using a frequency-doubling crystal. The output power of the Er-FOFC is 20 mW, which is first amplified to 370 mW by an Er-fiber amplifier and then compressed to a pulse width of 45.7 fs. Subsequently, the spectrum is extended to cover the wavelength at 1 μm with a highly nonlinear fiber, resulting in an output power of 180 mW. The broadened spectrum at 1 μm is amplified to 601 mW by a Yb-fiber amplifier, and the compressed power increases to 420 mW. Using an MgO:PPLN crystal, the compressed laser is frequency-doubled to produce a 532 nm laser output with 155 mW power and a doubling efficiency of 36%. Utilizing this system, the absolute frequency measurements are conducted on the fundamental frequency light at 1064 nm and the doubled frequency light at 532 nm from the iodine-stabilized 532 nm Nd:YAG laser, yielding a beat signal with an SNR of greater than 40 dB. This SNR represents a 13 dB improvement compared with the result obtained when an amplified seed light is frequency-doubled by using PPLN and then coupled into a PCF for direct spectral broadening to cover the 532 nm band. Over several days of continuous monitoring, there is no observed risk of SNR degradation. Moreover, subsequent frequency measurements are carried out continuously for over several hours, with the results maintaining consistency with recommended values.
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61827821).
    [1]

    Quinn T J 2003 Metrologia 40 103Google Scholar

    [2]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [3]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 025005Google Scholar

    [4]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 035001Google Scholar

    [5]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M. D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [6]

    Meylahn F, Knust N, Willke B 2022 Phys. Rev. D 105 122004Google Scholar

    [7]

    Cai R G, Cao Z J, Guo Z K, Wang S J, Tao Yang 2017 Nat. Rev. Phys. 4 687Google Scholar

    [8]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [9]

    Hong F L, Ishikawa J, Sugiyama K, Onae A, Matsumoto H, Ye J, Hall J L 2003 IEEE Trans. Instrum. Meas. 52 240Google Scholar

    [10]

    Okhapkin M V, Skvortsov M N, Belkin A M, Kvashnin N L, Bagayev S N 2002 Opt. Commun. 203 359Google Scholar

    [11]

    https://www.bipm.org/documents/20126/41549560/M-e-P_I2_633.pdf/c4c25f25-ae65-e05d-402a-9bfc84c715c3 [2024-1-16]

    [12]

    https://www.bipm.org/documents/20126/41549514/M-e-P_I2_532.pdf/16c7ddb8-4854-9f16-34cc-5bcebe299ce8 [2024-1-16]

    [13]

    林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 0902002Google Scholar

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 0902002Google Scholar

    [14]

    吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 030001Google Scholar

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 030001Google Scholar

    [15]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum Electron. 9 1066Google Scholar

    [16]

    Udem T H, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, Stenz A, Windler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [18]

    Ranka J K, Windler R S, Stenz A J 2000 Opt. Lett. 25 25Google Scholar

    [19]

    Rovera G D, Ducos F, Zondy J J, Acef O, Wallerand J P, Knight J C, Russell P St J 2002 Meas. Sci. Technol. 13 918Google Scholar

    [20]

    方占军, 王强, 王民明, 孟飞, 林百科, 李天初 2007 56 5684Google Scholar

    Fang Z J, Wang Q, Wang M M, Meng F, Lin B K, Li T C 2007 Acta Phys. Sin. 56 5684Google Scholar

    [21]

    Kobayashi T, Akamatsu D, Hosaka K, et al. 2015 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 10-15, 2015 p1

    [22]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2011 中国激光 38 231

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2011 Chin. J. Lasers 38 231

    [23]

    曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初 2011 60 094208Google Scholar

    Cao S Y, Cai Y, Wang G Z, Meng F, Zhang Z G, Fang Z J, Li T C 2011 Acta Phys. Sin. 60 094208Google Scholar

    [24]

    刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 64 094204Google Scholar

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar

    [25]

    Liu H, Cao S Y, Yu Y, Lin B K, Lu W P, Fang Z J 2017 Meas. Sci. Technol. 28 105202Google Scholar

    [26]

    王少峰, 武腾飞, 曹士英, 夏传青, 韩继博, 赵春播 2017 计测技术 37 8Google Scholar

    Wang S F, Wu T F, Cao S Y, Xia C Q, Han J B, Zhao C B 2017 Metrol. Meas. Technol. 37 8Google Scholar

    [27]

    Cao S, Lin B, Yuan X, Fang Z 2021 Opt. Commun. 478 126376Google Scholar

  • 图 1  基于光谱增强技术输出532 nm激光的掺Er光纤光梳测量装置图(其中, A部分为掺Er光纤飞秒激光器, B部分为掺Er光纤放大器、光谱展宽、掺Yb光纤放大器, C部分为脉冲压缩器、非线性倍频及与激光拍频. LD1—5为980 nm激光二极管, WDM为波分复用器, 1∶3为分束器, EDF为掺Er光纤, Col1—8为准直器, M1—3为反射镜, ISO为隔离器, $ {\lambda }/{2} $为半波片, ${\lambda }/{4} $为1/4波片, FR为法拉第旋光器, PZT为压电陶瓷促动器, FM为折叠镜, G1, G2为光栅, PPLN为周期极化铌酸锂晶体, FL为聚 焦透镜, HRM为中空屋脊棱镜, Beat module为拍频模块, fr -servo为重复频率伺服锁定系统, f0-servo为载波包络偏移频率伺服锁定系统)

    Figure 1.  Diagram of the frequency measurement of I2-stabilized Nd:YAG laser based on an Er-FOFC with the spectral enhancement technique. Part A is Er-doped fiber femtosecond laser. Part B is EDFA, supercontinuum fiber, YDFA. Part C is pulse compressor, SHG module and beat frequency module. LD1−5 is a 980 nm laser diode. WDM is a wavelength division multiplexer. 1∶3 is an 1∶3 beam splitter. EDF is an erbium-doped fiber. Col1−8 is a fiber collimator. M1−3 is a mirror, and ISO is an isolator. λ/ 2 is a half wave plate, λ/ 4 is a 1/4 wave plate. FR is a Faraday rotator. PZT is a piezoelectric transducer. G1, G2 are gratings. PPLN is periodically polarized lithium niobate crystal. FL are spherical lenses. HRM is a hollow ridge prism, and beat module is a beat frequency module. fr -servo is repetition frequency servo locking-loop. f0 -servo is carrier envelope offset frequency servo locking-loop.

    图 2  激光拍频模块图 (其中, Comb为光学频率梳, CW为待测连续光, ${\lambda }/{2} $为半波片, PBS为偏振分光棱镜, G为光栅, PD为光电探测器, LPF为低通滤波器, AMP为信号放大器, Frequency counter为微波频率计数器)

    Figure 2.  Beat mote module. Comb is an optical frequency comb, and CW is the continuous wavelength laser to be measured. λ/ 2 is a half wave plate. PBS is a polarizing beam splitter prism. PD is a photodetector. G is a grating. LPF is a low-pass filter. AMP is an optical amplifier. Frequency counter is a microwave frequency counter.

    图 3  掺Er光纤飞秒激光器输出光谱

    Figure 3.  Spectrum of the Er-doped fiber femtosecond laser.

    图 4  种子光放大压缩后脉冲的自相关曲线

    Figure 4.  Autocorrelation trace of the dechirped pulse after the Er-fiber amplifier.

    图 5  经高非线性光纤扩谱后超连续光谱

    Figure 5.  Supercontinuum spectrum after high nonlinear optical fiber.

    图 6  1 μm波段激光放大及压缩后曲线 (a) 经掺Yb光纤放大后的光谱图; (b) 光栅对压缩后脉冲自相关曲线

    Figure 6.  Spectra and autocorrelation traces the dechirped pulse after the Yb-fiber amplifier: (a) Spectra; (b) autocorrelation trace.

    图 7  倍频后532 nm脉冲输出光谱

    Figure 7.  Spectrum of 532 nm pulse output after frequency doubling.

    图 8  掺Er光纤光梳与碘稳频532 nm激光器拍频信号 (a)与倍频光532 nm激光拍频信号; (b)与基频光1064 nm激光拍频信号

    Figure 8.  Beat note signal between the Er-FOFC and an I2-stabilized Nd:YAG laser: (a) Beat note signal at 532 nm; (b) beat note signal at 1064 nm.

    图 9  掺Er光纤光梳与碘稳频532 nm激光器拍频信号计数结果 (a) 与倍频光532 nm激光拍频信号计数结果; (b) 与基频光1064 nm激光拍频信号计数结果

    Figure 9.  Beat note signal counting results between the Er-FOFC and an I2-stabilized Nd:YAG laser: (a) Beat note signal counting result at 532 nm; (b) beat note signal counting result at 1064 nm.

    Baidu
  • [1]

    Quinn T J 2003 Metrologia 40 103Google Scholar

    [2]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [3]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 025005Google Scholar

    [4]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 035001Google Scholar

    [5]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M. D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [6]

    Meylahn F, Knust N, Willke B 2022 Phys. Rev. D 105 122004Google Scholar

    [7]

    Cai R G, Cao Z J, Guo Z K, Wang S J, Tao Yang 2017 Nat. Rev. Phys. 4 687Google Scholar

    [8]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [9]

    Hong F L, Ishikawa J, Sugiyama K, Onae A, Matsumoto H, Ye J, Hall J L 2003 IEEE Trans. Instrum. Meas. 52 240Google Scholar

    [10]

    Okhapkin M V, Skvortsov M N, Belkin A M, Kvashnin N L, Bagayev S N 2002 Opt. Commun. 203 359Google Scholar

    [11]

    https://www.bipm.org/documents/20126/41549560/M-e-P_I2_633.pdf/c4c25f25-ae65-e05d-402a-9bfc84c715c3 [2024-1-16]

    [12]

    https://www.bipm.org/documents/20126/41549514/M-e-P_I2_532.pdf/16c7ddb8-4854-9f16-34cc-5bcebe299ce8 [2024-1-16]

    [13]

    林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 0902002Google Scholar

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 0902002Google Scholar

    [14]

    吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 030001Google Scholar

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 030001Google Scholar

    [15]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum Electron. 9 1066Google Scholar

    [16]

    Udem T H, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, Stenz A, Windler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [18]

    Ranka J K, Windler R S, Stenz A J 2000 Opt. Lett. 25 25Google Scholar

    [19]

    Rovera G D, Ducos F, Zondy J J, Acef O, Wallerand J P, Knight J C, Russell P St J 2002 Meas. Sci. Technol. 13 918Google Scholar

    [20]

    方占军, 王强, 王民明, 孟飞, 林百科, 李天初 2007 56 5684Google Scholar

    Fang Z J, Wang Q, Wang M M, Meng F, Lin B K, Li T C 2007 Acta Phys. Sin. 56 5684Google Scholar

    [21]

    Kobayashi T, Akamatsu D, Hosaka K, et al. 2015 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 10-15, 2015 p1

    [22]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2011 中国激光 38 231

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2011 Chin. J. Lasers 38 231

    [23]

    曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初 2011 60 094208Google Scholar

    Cao S Y, Cai Y, Wang G Z, Meng F, Zhang Z G, Fang Z J, Li T C 2011 Acta Phys. Sin. 60 094208Google Scholar

    [24]

    刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 64 094204Google Scholar

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar

    [25]

    Liu H, Cao S Y, Yu Y, Lin B K, Lu W P, Fang Z J 2017 Meas. Sci. Technol. 28 105202Google Scholar

    [26]

    王少峰, 武腾飞, 曹士英, 夏传青, 韩继博, 赵春播 2017 计测技术 37 8Google Scholar

    Wang S F, Wu T F, Cao S Y, Xia C Q, Han J B, Zhao C B 2017 Metrol. Meas. Technol. 37 8Google Scholar

    [27]

    Cao S, Lin B, Yuan X, Fang Z 2021 Opt. Commun. 478 126376Google Scholar

  • [1] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun. Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer. Acta Physica Sinica, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [3] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [4] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [6] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [7] Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet. Acta Physica Sinica, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [8] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [9] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [10] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [11] Zheng Pei-Chao, Li Xiao-Juan, Wang Jin-Mei, Zheng Shuang, Zhao Huai-Dong. Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy. Acta Physica Sinica, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [12] Wu Yue-Long, Li Rui, Rui Yang, Jiang Hai-Feng, Wu Hai-Bin. Precise measurement of 6Li transition frequencies and hyperfine splitting. Acta Physica Sinica, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [13] Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan. Optical frequency linked dual-comb absorption spectrum measurement. Acta Physica Sinica, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [14] Li Bai-Hui, Gao Xun, Song Chao, Lin Jing-Quan. Laser induced plasma spectral characteristics of Cu with magnetically and spatially combined confinement. Acta Physica Sinica, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [15] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [16] Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement. Acta Physica Sinica, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [17] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Xing Shu-Jian, Qu Xing-Hua. A new method of measuring absolute distance by using optical frequency comb. Acta Physica Sinica, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] Du Chuang, Gao Xun, Shao Yan, Song Xiao-Wei, Zhao Zhen-Ming, Hao Zuo-Qiang, Lin Jing-Quan. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [19] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
Metrics
  • Abstract views:  2238
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2024
  • Accepted Date:  16 February 2024
  • Available Online:  04 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回
Baidu
map