搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场约束下激光诱导等离子体光谱强度演化研究

李丞 高勋 刘潞 林景全

引用本文:
Citation:

磁场约束下激光诱导等离子体光谱强度演化研究

李丞, 高勋, 刘潞, 林景全
cstr: 32037.14.aps.63.145203

Evolution of laser-induced plasma spectrum intensity under magnetic field confinement

Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan
cstr: 32037.14.aps.63.145203
PDF
导出引用
  • 对磁场约束下激光诱导铜等离子体光谱强度演化进行了实验研究,分析了在磁场约束环境下的等离子体光谱强度演化过程以及激光能量对光谱增强的影响. 实验结果表明:在磁场约束下铜等离子体内原子光谱和离子光谱均有所增强,在磁场约束下Cu I 510.55 nm谱线强度时间演化过程中在1.2–5.7 μs时间范围内附近出现双峰结构,在距离靶材表面0–1.4 mm空间范围内磁场约束Cu I 510.55 nm光谱增强明显. Cu I 510.55 nm和Cu I 515.32 nm光谱增强因子随激光能量的增加呈单调递减变化,激光能量20 mJ时增强因子最大分别为11和8. 对磁场约束下等离子体发射光谱强度增强的物理原因进行了探讨.
    In this paper, the evolution of laser-induced copper plasma spectrum intensity under magnetic field confinement is studied. The evolution process of plasma spectrum intensity and laser energy effect on spectral enhancement are analyzed. Experimental results show that the atomic spectrum and ion spectrum of copper plasma are enhanced as magnetic field increases. In the spectral intensity evolution plot of Cu I 510.55 nm there appears double peak structure in a time range from 1.2 μs to 5.7 μs. The spectral intensity of Cu I 510.55 nm is significantly enhanced in a space range from 0 mm to 1.4 mm away from the target surface. The spectral enhancement factors of Cu I 510.55 nm and Cu I 515.32 nm monotonically decrease with the laser pulse energy increasing, and the maximum enhancement factors for Cu I 510.55 nm and Cu I 515.32 nm are 11 and 8 respectively at the laser energy 20 mJ. The enhancement mechanism of magnetic confinement plasma spectrum is also discussed.
    • 基金项目: 国家自然科学基金(批准号:11074027,61178022,11211120156)、吉林省科技厅项目(批准号:201215132)和教育部博士点基金-新教师项目(批准号:20112216120006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074027, 61178022, 11211120156), the Natural Science Foundation of Jilin Province, China (Grant No. 201215132), and the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No. 20112216120006).
    [1]

    Kitaoka C, Wagatsuma K 2009 Meta. Ana. 3 003

    [2]

    Agnes N, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209

    [3]

    Liu J, Tao H Y, Gao X, Hao Z Q, Lin J Q 2013 Chin. Phys. B 22 044206

    [4]

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202]

    [5]

    Harilal S S, Tillack M S, O'shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413

    [6]

    Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Exp. 19 14067

    [7]

    Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105

    [8]

    Chen Z, Bogaerts A 2005 J. Phys. 97 063305

    [9]

    Shen X K, He X N, Huang H, Lu Y F 2007 Appl. Phys. Lett. 91 081501

    [10]

    Neogi A, Thareja R K 1999 Phys. Plasma 6 365

    [11]

    Bittencourt José A 2004 Fundamentals of Plasma Physics Fund (New York: Springer Press) pp470-477

    [12]

    Rai V N, Rai A K, Yueh F Y, Singh J P 2003 Appl. Opt. 42 2085

    [13]

    Chen F F, Lieberman M A 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) pp184-189

    [14]

    Nolte S, Momma C, Jacobs H, Tnnermann A, Chichkov B N, Wellegehausen B, Welling H 1997 J. Opt. Soc. Am. B 14 2716

  • [1]

    Kitaoka C, Wagatsuma K 2009 Meta. Ana. 3 003

    [2]

    Agnes N, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209

    [3]

    Liu J, Tao H Y, Gao X, Hao Z Q, Lin J Q 2013 Chin. Phys. B 22 044206

    [4]

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202]

    [5]

    Harilal S S, Tillack M S, O'shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413

    [6]

    Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Exp. 19 14067

    [7]

    Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105

    [8]

    Chen Z, Bogaerts A 2005 J. Phys. 97 063305

    [9]

    Shen X K, He X N, Huang H, Lu Y F 2007 Appl. Phys. Lett. 91 081501

    [10]

    Neogi A, Thareja R K 1999 Phys. Plasma 6 365

    [11]

    Bittencourt José A 2004 Fundamentals of Plasma Physics Fund (New York: Springer Press) pp470-477

    [12]

    Rai V N, Rai A K, Yueh F Y, Singh J P 2003 Appl. Opt. 42 2085

    [13]

    Chen F F, Lieberman M A 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) pp184-189

    [14]

    Nolte S, Momma C, Jacobs H, Tnnermann A, Chichkov B N, Wellegehausen B, Welling H 1997 J. Opt. Soc. Am. B 14 2716

计量
  • 文章访问数:  8030
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 修回日期:  2014-03-04
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map