Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

Ma Yu-Fei He Ying Yu Xin Yu Guang Zhang Jing-Bo Sun Rui

Citation:

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015T80350), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560262), the Postdoctoral Fund of Heilongjiang Province, China (Grant No. LBH-Z14074), the Special Financial Grant from the Heilongjiang Province Postdoctoral Foundation of China (Grant No. LBH-TZ0602), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2015044), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164).
    [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1] Ma Yu-Fei. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing. Acta Physica Sinica, 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [2] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [3] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [5] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] He Ying, Ma Yu-Fei, Tong Yao, Peng Zhen-Fang, Yu Xin. Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [7] Zhou Yu, Cao Yuan, Zhu Gong-Dong, Liu Kun, Tan Tu, Wang Li-Jun, Gao Xiao-Ming. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser. Acta Physica Sinica, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [8] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] Zhou Chao, Zhang Lei, Li Jin-Song. Detection of atmospheric multi-component based on a single quantum cascade laser. Acta Physica Sinica, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] Zhao Yan-Dong, Fang Yong-Hua, Li Yang-Yu, Wu Jun, Li Da-Cheng, Cui Fang-Xiao, Liu Jia-Xiang, Wang An-Jing. Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity. Acta Physica Sinica, 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [11] Yin Xu-Kun, Zheng Hua-Dan, Dong Lei, Wu Hong-Peng, Liu Xiao-Li, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode. Acta Physica Sinica, 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [12] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] Wu Hong-Peng, Dong Lei, Zheng Hua-Dan, Liu Yan-Yan, Ma Wei-Guang, Zhang Lei, Wang Wu-Yi, Zhu Qing-Ke, Yin Wang-Bao, Jia Suo-Tang. Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes. Acta Physica Sinica, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [14] Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. All optical quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [15] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [16] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] Tang Yuan-Yuan, Liu Wen-Qing, Kan Rui-Feng, Zhang Yu-Jun, Liu Jian-Guo, Xu Zhen-Yu, Shu Xiao-Wen, Zhang Shuai, He Ying, Geng Hui, Cui Yi-Ben. Spectroscopy processing for the NO measurement based on the room-temperature pulsed quantum cascade laser. Acta Physica Sinica, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [18] Xu Gang-Yi, Li Ai-Zhen. Interface phonons in the active core of a quantum cascade laser. Acta Physica Sinica, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] Lin Gui-Jiang, Zhou Zhi-Wen, Lai Hong-Kai, Li Cheng, Chen Song-Yan, Yu Jin-Zhong. Energy band design for Si/SiGe quantum cascade laser. Acta Physica Sinica, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
    [20] Yuan Ping, Liu Xin-Sheng, Zhang Yi-Jun, Jie Lu-You, Dong Chen-Zhong. . Acta Physica Sinica, 2002, 51(11): 2495-2502. doi: 10.7498/aps.51.2495
Metrics
  • Abstract views:  7559
  • PDF Downloads:  241
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2015
  • Accepted Date:  25 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map