搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究

马欲飞 何应 于欣 于光 张静波 孙锐

引用本文:
Citation:

基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究

马欲飞, 何应, 于欣, 于光, 张静波, 孙锐

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui
PDF
导出引用
  • 采用石英增强光声光谱(QEPAS)技术对CO痕量气体展开检测研究. 为了实现超高灵敏度探测, 采用输出波长为4.6 m的新颖中红外高功率分布反馈量子级联激光器为光源, 实现了对CO气体基频吸收带的激发与测量. 在优化了调制深度、气体压强和提高了CO分子的振动-转动弛豫速率后, 获得了1.95 ppbv的优异探测极限. 在分析检测结果的过程中, 讨论了能级寿命对信号强度的影响, 并对QEPAS信号强度的表达式进行了修正.
    Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.
      通信作者: 马欲飞, mayufei@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61505041)、黑龙江省自然科学基金(批准号: F2015011)、中国博士后科学基金特别资助(批准号: 2015T80350)、中国博士后科学基金面上资助(批准号: 2014M560262)、黑龙江省博士后科学基金资助(批准号: LBH-Z14074)、黑龙江省博士后科学基金特别资助(批准号: LBH-TZ0602)、中央高校基本科研业务费专项资金(批准号: HIT. NSRIF. 2015044) 和国家重大科学仪器设备开发专项(批准号: 2012YQ040164)资助的课题.
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015T80350), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560262), the Postdoctoral Fund of Heilongjiang Province, China (Grant No. LBH-Z14074), the Special Financial Grant from the Heilongjiang Province Postdoctoral Foundation of China (Grant No. LBH-TZ0602), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2015044), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164).
    [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [2] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究.  , 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量.  , 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [5] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究.  , 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术.  , 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [7] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体.  , 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [8] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性.  , 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法.  , 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] 赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静. 基于椭圆腔共振的石英增强光声光谱理论研究.  , 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [11] 尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂. 基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化.  , 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [12] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制.  , 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究.  , 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [14] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [15] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现.  , 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究.  , 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究.  , 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [18] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究.  , 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计.  , 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
    [20] 袁萍, 刘欣生, 张义军, 颉录有, 董晨钟. 与闪电过程有关的NII离子能级寿命的理论计算.  , 2002, 51(11): 2495-2502. doi: 10.7498/aps.51.2495
计量
  • 文章访问数:  7558
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-20
  • 修回日期:  2015-12-25
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map