搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱椭偏仪的纳米光栅无损检测

马智超 徐智谋 彭静 孙堂友 陈修国 赵文宁 刘思思 武兴会 邹超 刘世元

引用本文:
Citation:

基于光谱椭偏仪的纳米光栅无损检测

马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元

Nondestructive detection of nano grating by generalized ellipsometer

Ma Zhi-Chao, Xu Zhi-Mou, Peng Jing, Sun Tang-You, Chen Xiu-Guo, Zhao Wen-Ning, Liu Si-Si, Wu Xing-Hui, Zou Chao, Liu Shi-Yuan
PDF
导出引用
  • 本文制备了硅基和光刻胶两种材料的纳米光栅,利用自研制的新型广义椭偏仪对该纳米结构的光栅进行了测量,随后利用建立的拟合模型对其测量数据进行了拟合,结果证明了运用该仪器进行纳米光栅结构无损检测的可行性,在入射角60,方位角75的测量条件下,纳米结构关键尺寸、侧壁角等三维形貌参数的测量精度最大可达99.97%,最大误差小于1%,该技术对于无损检测有着一定的推动意义.
    The silicon nanometer structure grating and the photoresist nanometer structure grating were prepared. A fitting model was built on the new self-developed generalized ellipsometer. Then, the gratings was tested and fitted. Results proved that the machine could work well in nondestructive test of nano grating. Under the condition of the incident angle of 60 and the azimuth angle of 75, the measurement accuracy can be up to 99.97% for the three-dimensional morphology parameters such as key dimension and sidewall angle and so on, and the maximum error is less than 1%. This method is significant for the nondestructive test.
    • 基金项目: 国家自然科学基金(批准号:61076042,60607006)、国家重大科学仪器设备开发专项(批准号:2011YQ16000205)和国家高技术研究发展计划(批准号:2011AA03A106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042, 60607006), the Special Project on Development of National Key Scientic Instruments and Equipment of China (Grant No. 2011YQ16000205), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A106).
    [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Colburn M, Suez I, Choi B J, Meissl M, Bailey T, Sreenivasan S V, Ekerdt J G, Grant Willson C 2001 J. Vac. Sci. Technol. B 19 2685

    [3]

    Ding Y, Hyun Wook Ro, Alvine K J, Okerberg B C, Zhou J, Douglas J F, Karim A, Soles C L 2008 Adv. Funct. Mater. 18 1854

    [4]

    Ding Y, Hyun Wook Ro, Douglas J F, Jones R L, Hine D R, Karim A, Soles C L 2007 Adv. Mater. 19 1377

    [5]

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063(in Chinese) [淡春雷, 易永祥, 汪国平 2002 51 1063]

    [6]

    Takuya Ohzono, Hirohmi Watanabe, Richard Vendamme, Carina kamaga, Toyoki Kunitake, Teruya Ishihara, Masatsugu Shimomura 2007 Adv. Mater. 19 3229

    [7]

    Ren L Y, Liu L R, Liu D A, Luan Z 2003 Acta Phys. Sin. 52 2788(in Chinese)[任立勇, 刘立人, 刘德安, 栾竹 2003 52 2788]

    [8]

    Jones R L, Tengjiao Hu, Soles C L, Lin E K, Reano R M, Pang S W, Casa D M 2006 Nano Letters 6 1728

    [9]

    Zhao H J, Peng Y J, Tan Y 2009 Chin. Phys. B 18 2326

    [10]

    Fuard D, Corinne, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [11]

    Wang J P, Jin Y X, Ma J Y 2010 Chin. Phys. B 19 054202

    [12]

    Jones R L, Hu T J, Lin E K, Wen L W 2003 Appl. Phys. Lett. 83 4059

    [13]

    Lei Y H, Liu X, Guo J C 2011 Chin. Phys. B 20 042901

    [14]

    Mu Q Q, Liu Y J, Hu L F 2006 Acta Phys. Sin. 55 1055 (in Chinese) [穆全全, 刘永军, 胡立发 2006 55 1055]

    [15]

    Zhang Z, Xu Z M, Sun T Y 2013 Acta Phys. Sin. 62 168102 (in Chinese) [张铮, 徐智谋, 孙堂友 2013 62 168102]

    [16]

    Lee J H, Ro H W, Huang R, Lemaillet P, Germer T A, Soles C L, Stafford C M 2012 Nano Letters 12 5995

    [17]

    Patrick H J, Germer T A, Ding Y, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233105

    [18]

    Herzinger C M, Johs B, MCGahan W A, Woollam J A 1998 J. Appl. Phys. 83 3323

    [19]

    Stafford C M, Harrison C, Beers K L, Karim A, Amis E J, Vanlandingham M R, Kim H, Willivolksen, Miller R D, Simonyi E E 2004 Nat. Mater. 3 345

    [20]

    El kodadi M, Soulan S, Mbesacier, Schiavone P 2009 Micro. Engin. 86 1040

    [21]

    Al-Assaad R M, Li T, Hu W C 2008 J. Micro/Nanolith. MEMS MOEMS 7 013008

  • [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Colburn M, Suez I, Choi B J, Meissl M, Bailey T, Sreenivasan S V, Ekerdt J G, Grant Willson C 2001 J. Vac. Sci. Technol. B 19 2685

    [3]

    Ding Y, Hyun Wook Ro, Alvine K J, Okerberg B C, Zhou J, Douglas J F, Karim A, Soles C L 2008 Adv. Funct. Mater. 18 1854

    [4]

    Ding Y, Hyun Wook Ro, Douglas J F, Jones R L, Hine D R, Karim A, Soles C L 2007 Adv. Mater. 19 1377

    [5]

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063(in Chinese) [淡春雷, 易永祥, 汪国平 2002 51 1063]

    [6]

    Takuya Ohzono, Hirohmi Watanabe, Richard Vendamme, Carina kamaga, Toyoki Kunitake, Teruya Ishihara, Masatsugu Shimomura 2007 Adv. Mater. 19 3229

    [7]

    Ren L Y, Liu L R, Liu D A, Luan Z 2003 Acta Phys. Sin. 52 2788(in Chinese)[任立勇, 刘立人, 刘德安, 栾竹 2003 52 2788]

    [8]

    Jones R L, Tengjiao Hu, Soles C L, Lin E K, Reano R M, Pang S W, Casa D M 2006 Nano Letters 6 1728

    [9]

    Zhao H J, Peng Y J, Tan Y 2009 Chin. Phys. B 18 2326

    [10]

    Fuard D, Corinne, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [11]

    Wang J P, Jin Y X, Ma J Y 2010 Chin. Phys. B 19 054202

    [12]

    Jones R L, Hu T J, Lin E K, Wen L W 2003 Appl. Phys. Lett. 83 4059

    [13]

    Lei Y H, Liu X, Guo J C 2011 Chin. Phys. B 20 042901

    [14]

    Mu Q Q, Liu Y J, Hu L F 2006 Acta Phys. Sin. 55 1055 (in Chinese) [穆全全, 刘永军, 胡立发 2006 55 1055]

    [15]

    Zhang Z, Xu Z M, Sun T Y 2013 Acta Phys. Sin. 62 168102 (in Chinese) [张铮, 徐智谋, 孙堂友 2013 62 168102]

    [16]

    Lee J H, Ro H W, Huang R, Lemaillet P, Germer T A, Soles C L, Stafford C M 2012 Nano Letters 12 5995

    [17]

    Patrick H J, Germer T A, Ding Y, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233105

    [18]

    Herzinger C M, Johs B, MCGahan W A, Woollam J A 1998 J. Appl. Phys. 83 3323

    [19]

    Stafford C M, Harrison C, Beers K L, Karim A, Amis E J, Vanlandingham M R, Kim H, Willivolksen, Miller R D, Simonyi E E 2004 Nat. Mater. 3 345

    [20]

    El kodadi M, Soulan S, Mbesacier, Schiavone P 2009 Micro. Engin. 86 1040

    [21]

    Al-Assaad R M, Li T, Hu W C 2008 J. Micro/Nanolith. MEMS MOEMS 7 013008

  • [1] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型.  , 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强.  , 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [3] 孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章. 基于光声信号的高铁钢轨表面缺陷检测方法.  , 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [4] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法.  , 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [5] 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究.  , 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [6] 陆乃彦, 翁雨燕. 软模板纳米压印技术及其对共轭高分子的取向控制研究.  , 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [7] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究.  , 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [8] 陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋. 基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量.  , 2014, 63(18): 180701. doi: 10.7498/aps.63.180701
    [9] 徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军. HfO2顶层多层介质膜脉宽压缩光栅的离子束刻蚀.  , 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [10] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究.  , 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [11] 彭静, 徐智谋, 吴小峰, 孙堂友. 纳米压印技术制备表面光子晶体LED的研究.  , 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [12] 夏委委, 郑国恒, 李天昊, 刘超然, 李冬雪, 段智勇. 假塑性流体纳米压印中影响填充度的因素.  , 2013, 62(18): 188105. doi: 10.7498/aps.62.188105
    [13] 李天昊, 郑国恒, 刘超然, 夏委委, 李冬雪, 段智勇. 掩膜板凸出环隔离压缩式纳米压印施压气体的研究.  , 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [14] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究.  , 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [15] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术.  , 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [16] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化.  , 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [17] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备.  , 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [18] 申晓志, 袁 萍, 王 杰, 郭逸潇, 乔红贞, 赵学燕. 拟合参量计算跃迁概率.  , 2008, 57(7): 4066-4069. doi: 10.7498/aps.57.4066
    [19] 陈雷明, 郭艳峰, 郭 熹, 唐为华. 改性光刻胶制备纳米压印模版.  , 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [20] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究.  , 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
计量
  • 文章访问数:  6659
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2013-10-20
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map