Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Linear-wave propagation in liquids containing bubbly clusters

Fan Yu-Zhe Chen Bao-Wei Li Hai-Sen Xu Chao

Citation:

Linear-wave propagation in liquids containing bubbly clusters

Fan Yu-Zhe, Chen Bao-Wei, Li Hai-Sen, Xu Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Acoustic wave propagation in polydisperse bubbly liquids is relevant to diverse applications, such as ship propellers, underwater explosions, and biomedical applications. The simulation of bubbly liquids can date back to Foldy who presented a general theory. In the linear regime, two frequently used models for bubbly liquids are based on the continuum theory and on the multiple scattering theory. Under the homogenization-based assumption, models based on the volume-averaged equations or on the ensemble-averaged equations are designed to find the solutions of a given two-phase flow. The effective wave number is derived through the linearization of these equations. A second approach to the problem of linear wave propagation utilizes the multiple scattering theory. Bubbles are treated as point-like scatterers, and the total field at any location can be predicted by multiple scattering of scatterers. However, in most of experimental researches, the comparison between the approaches and the experimental results is not satisfactory for frequencies near the peak of phase speed and attenuation. In fact, the discrepancies between measurements and approaches are irregular, and the explanations of these discrepancies need further studying. We indicate that such a discrepancy should be attributed to an implicit assumption in these approaches:the bubbles are spatially uniform distribution and statistically independent of each other. In contrast, the complex bubble structures can be observed in many practical bubbly liquids which have important consequences for the acoustic wave propagation. In this paper, our intent is to model the effect of small bubble cluster on linear-wave propagation in bubbly liquids using the self-consistent method. The quasi-crystal approximation is applied to the self-consistent method, and the effective wave number is derived. According to the experimental results, the small clusters of bubbles often exist in bubbly liquids. Therefore, a three-dimensional random model, the Neyman-Scott point process, is proposed to simulate bubbly liquid with the cluster structure. Using this method, we study the influence of such a phenomenon on acoustic dispersion and attenuation relation. A formula for effective wavenumber in clustered bubbly liquid is derived. Compared with the results from the equation of Commander and Prosperetti[J. Acoust. Soc. Am. 85 732 (1989)], our results show that the clustering can suppress peaks in the attenuation and the phase velocity, each of which is a function of frequency. Further, we provide a numerical method. A clustered bubbly liquid is simulated with strict mathematical method and the statistical information is obtained through ratio-unbiased statistical approach. Using such a method, we quantificationally analyze the influence of estimated value on predictions.
      Corresponding author: Chen Bao-Wei, cbcwin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41576102, 41506115).
    [1]

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214 (in Chinese)[陈伟中 2014 声空化物理 (北京:科学出版社) 第214 页]

    [2]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 p1

    [3]

    Fan Y Z, Li H S, Xu C, Chen B W, Du W D 2017 Acta Phys. Sin. 66 014305 (in Chinese)[范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东 2017 66 014305]

    [4]

    Zhang Z D, Prosperetti A 1994 Phys. Fluids 6 2956

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Prosperetti A, A Lezzi 1986 J. Fluid. Mech. 168 457

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽 2013 62 064304]

    [8]

    Ando K, Colonius T, Brennen C E 2011 Int. J. Multiphase Flow 37 596

    [9]

    Fuster D, Conoir J M, Colonius T 2014 Phys. Rev. E 90 063010

    [10]

    An Y 2012 Phys. Rev. E 85 016305

    [11]

    Foldy L L 1945 Phys. Rev. 67 107

    [12]

    Qian Z W 2012 Acoustic Propagation in the Complex Medium and its Application (Beijing:Science Press) p46 (in Chinese)[钱祖文 2012 颗粒介质中的声传播及其应用 (北京:科学出版社) 第46页]

    [13]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 1629

    [14]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 2149

    [15]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 168

    [16]

    Chen J, Zhu Z 2006 Ultrasonics 44 e115

    [17]

    Seo J, Lel S, Tryggvason G 2010 Phys. Fluids 22 063302

    [18]

    Chen J S, Zhu Z M 2005 Acta Acoustic 30 386 (in Chinese)[陈九生, 朱哲民 2005 声学学报 30 386]

    [19]

    Wilson P S, Roy R A, Carey W M 2005 J. Acoust. Soc. Am. 117 1895

    [20]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931

    [21]

    Leroy V, Strybulevych A, Page J H, Scanlon M 2011 Phys. Rev. E 83 046605

    [22]

    Waterman P C, Truell, R 1960 J. Math. Phys. 2 512

    [23]

    Illian J, Penttinen A, Stoyan H, Stoyan D 2008 Statistical Analysis and Modelling of Spatial Point Patterns (Chichester:Jon Wiley and Sons) p374

    [24]

    Prosperetti A 1984 Ultrasonics 22 69

    [25]

    Liang B, Cheng J 2007 Phys. Rev. E 75 016605

    [26]

    Lax M 1952 Rev. Mod. Phys. 23 287

    [27]

    Linton C M, Martin P A 2006 SIAM J. Appl. Math. 66 1649

    [28]

    Xi X, Cegla F, Mettin R, Holsteyns F, Lippert A 2012 J. Acoust. Soc. Am. 132 37

    [29]

    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W 1999 Phil. Trans. R. Soc. Lond. A 357 313

    [30]

    Luther S 2000 Ph. D. Dissertation (Sachsen:Georg-August-University of Göttingen)

    [31]

    Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501

    [32]

    Tanaka U, Ogata Y, Stoyan D 2008 Biom. J. 50 43

  • [1]

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214 (in Chinese)[陈伟中 2014 声空化物理 (北京:科学出版社) 第214 页]

    [2]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 p1

    [3]

    Fan Y Z, Li H S, Xu C, Chen B W, Du W D 2017 Acta Phys. Sin. 66 014305 (in Chinese)[范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东 2017 66 014305]

    [4]

    Zhang Z D, Prosperetti A 1994 Phys. Fluids 6 2956

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Prosperetti A, A Lezzi 1986 J. Fluid. Mech. 168 457

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽 2013 62 064304]

    [8]

    Ando K, Colonius T, Brennen C E 2011 Int. J. Multiphase Flow 37 596

    [9]

    Fuster D, Conoir J M, Colonius T 2014 Phys. Rev. E 90 063010

    [10]

    An Y 2012 Phys. Rev. E 85 016305

    [11]

    Foldy L L 1945 Phys. Rev. 67 107

    [12]

    Qian Z W 2012 Acoustic Propagation in the Complex Medium and its Application (Beijing:Science Press) p46 (in Chinese)[钱祖文 2012 颗粒介质中的声传播及其应用 (北京:科学出版社) 第46页]

    [13]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 1629

    [14]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 2149

    [15]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 168

    [16]

    Chen J, Zhu Z 2006 Ultrasonics 44 e115

    [17]

    Seo J, Lel S, Tryggvason G 2010 Phys. Fluids 22 063302

    [18]

    Chen J S, Zhu Z M 2005 Acta Acoustic 30 386 (in Chinese)[陈九生, 朱哲民 2005 声学学报 30 386]

    [19]

    Wilson P S, Roy R A, Carey W M 2005 J. Acoust. Soc. Am. 117 1895

    [20]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931

    [21]

    Leroy V, Strybulevych A, Page J H, Scanlon M 2011 Phys. Rev. E 83 046605

    [22]

    Waterman P C, Truell, R 1960 J. Math. Phys. 2 512

    [23]

    Illian J, Penttinen A, Stoyan H, Stoyan D 2008 Statistical Analysis and Modelling of Spatial Point Patterns (Chichester:Jon Wiley and Sons) p374

    [24]

    Prosperetti A 1984 Ultrasonics 22 69

    [25]

    Liang B, Cheng J 2007 Phys. Rev. E 75 016605

    [26]

    Lax M 1952 Rev. Mod. Phys. 23 287

    [27]

    Linton C M, Martin P A 2006 SIAM J. Appl. Math. 66 1649

    [28]

    Xi X, Cegla F, Mettin R, Holsteyns F, Lippert A 2012 J. Acoust. Soc. Am. 132 37

    [29]

    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W 1999 Phil. Trans. R. Soc. Lond. A 357 313

    [30]

    Luther S 2000 Ph. D. Dissertation (Sachsen:Georg-August-University of Göttingen)

    [31]

    Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501

    [32]

    Tanaka U, Ogata Y, Stoyan D 2008 Biom. J. 50 43

  • [1] Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation. Acta Physica Sinica, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] Bi Sizhao,  Peng Zhaohui,  Xie Zhimin,  Wang Guangxu,  Zhang Lingshan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [3] Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [4] Wu Shuang-Lin, Li Zheng-Lin, Qin Ji-Xing, Wang Meng-Yuan, Dong Fan-Chen. Influence of tropical dipole in the East Indian Ocean on acoustic convergence region. Acta Physica Sinica, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [5] Li Qin-Ran, Sun Chao, Xie Lei. Modal intensity fluctuation during dynamic propagation of internal solitary waves in shallow water. Acta Physica Sinica, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [6] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [7] Cheng Wei, Teng Peng-Xiao, Lü Jun, Ji Pei-Feng, Dai Yi-Jing. Energy estimation of explosion sound source based on atmospheric sound propagation theory. Acta Physica Sinica, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [8] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [9] Research on the modal intensity fluctuation during the dynamic propagation of internal solitary waves in the shallow water. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211132
    [10] Bi Si-Zhao, Peng Zhao-Hui. Effect of earth curvature on long range sound propagation. Acta Physica Sinica, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [11] Liu Jin, Peng Zhao-Hui, Zhang Ling-Shan, Liu Ruo-Yun, Li Zheng-Lin. Effects of swells on sound propagation in surface duct environment in shallow water. Acta Physica Sinica, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [12] Yao Mei-Juan, Lu Li-Cheng, Sun Bing-Wen, Guo Sheng-Ming, Ma Li. Effects of wind-generated bubbles layer on sound propagation underneath rough sea surface in shallow water. Acta Physica Sinica, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [13] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [14] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [15] Zheng Guang-Ying, Huang Yi-Wang. Effect of linear bubble vibration on wave propagation in unsaturated porous medium containing air bubbles. Acta Physica Sinica, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [16] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [17] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [18] Wang Yong, Lin Shu-Yu, Mo Run-Yang, Zhang Xiao-Li. Vibration of the bubble in bubbly liquids. Acta Physica Sinica, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [19] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [20] He Shou-Jie, Chen Qi-Dai, Li Xue-Chen, Ai Xi-Cheng, Zhang Jian-Ping, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
Metrics
  • Abstract views:  5882
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2018
  • Accepted Date:  18 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map