Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation

Ma Shu-Qing Guo Xiao-Jin Zhang Li-Lun Lan Qiang Huang Chuang-Xia

Citation:

Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation

Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia
PDF
HTML
Get Citation
  • Convergence-zone (CZ) sound propagation is one of the most important hydro-acoustic phenomena in the deep ocean, which allows the acoustic signals with high intensity and low distortion to realize the long-range transmission. Accurate prediction and identification of CZ is of great significance in implementing remote detection or communication, but there is still no standard definition in the sense of mathematical physics for convergence zone. Especially for the issue of systematic error of computation introduced by the earth curvature, there is no exact propagation model. The curvature-correction methods always lead to the imprecision of the ray phase. In previous research work, we realized that the Riemannian geometric meaning of the caustics phenomena caused by ray convergence is that the caustic points are equivalent to the conjugate points, which form on geodesics with positive section curvature. In this work, we present a spherical layered acoustic ray propagation model for CZ based on the Riemannian geometric theory. With direct computation in the curved manifolds of the earth , a Riemannian geometric description of CZ is provided for the first time, on the basis of comprehensive analysis about its characteristics. And it shows that the mathematical expression of section curvature adds an additional item ${{\hat c(l){{\hat c}^\prime }(l)}}/{l}$ after considering the earth curvature, which reflects the influence of the earth curvature on the ray topology and CZ. By means of Jacobi field theory of Riemannian geometry, computational rule and method of the location and distance of CZ in deep water are proposed. Taking the typical Munk sound velocity profile for example, the new Riemannian geometric model of CZ is compared with the normal mode and curvature-correction method. Simulation and analysis show that the Riemannian geometric model of CZ given in this paper is a mathematical form naturally considering the earth curvature with theoretical accuracy, which lays more solid scientific foundations for the study of convergence zone. Moreover, we find that the location of CZ moves towards sound source when the earth curvature is considered, and the width of CZ near the sea surface first increases and then decreases with sound propagation proceeding. The maximum width is about 20 km and the minimum is about 4 km.
      Corresponding author: Zhang Li-Lun, zhanglilun@nudt.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020550C011), and the National Defense Science and Technology Key Laboratory Foundation for Underwater Acoustic Countermeasure Technology, China (Grant No. 6412214200403).
    [1]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348

    [4]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [5]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin. Phys. Mech. Astron. 46 094303Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust 7 75Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust 1 28

    [8]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    Tolstoy I, Clay C S 1987 Ocean Acoustics: Theory and Experiment in Underwater Sound (New York: American Institute of Physics) p20

    [10]

    Wu S L, Li Z L, Qin J X, Wang M Y, Li W 2022 J. Mar. Sci. Eng. 10 424Google Scholar

    [11]

    庄益夫, 张旭, 刘艳 2013 海洋通报 32 45Google Scholar

    Zhuang Y F, Zhang X, Liu Y 2013 Mar. Sci. Bull. 32 45Google Scholar

    [12]

    张晶晶, 罗博 2017 声学与电子工程 2017 8

    Zhang J J, Luo B 2017 Acoust. Electron. Eng. 2017 8

    [13]

    Yang Y, Guo L H, Gong Z X 2020 Global Oceans 2020: Singapore–U. S. Gulf Coast Electr Network, October 5–30, 2021 p2021-10-08

    [14]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 12 417Google Scholar

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 12 417Google Scholar

    [15]

    Vadov R A 2005 Acoust. Phys. 51 265Google Scholar

    [16]

    徐传秀, 朴胜春, 张红星, 杨士莪, 张海刚, 周建波 2015 声学技术 34 79

    Xu C X, Piao S C, Zhang H X, Yang S E, Zhang H G, Zhou J B 2015 Tech. Acoust. 34 79

    [17]

    毕思昭, 彭朝晖 2021 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Munk W H, O'Reilly W C, Reid J L 1988 J. Phys. Oceanogr. 18 1876Google Scholar

    [19]

    Yan J, Kang K Y 1995 Appl. Acoust. 45 9Google Scholar

    [20]

    Yan J 1999 Appl. Acoust. 57 163Google Scholar

    [21]

    郭肖晋, 马树青, 张理论, 蓝强, 黄创霞 2022 72 044302Google Scholar

    [22]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社 第267页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [23]

    刘伯胜, 雷家煜 2010 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p77 (in Chinese)

    [24]

    Cheeger J, Ebin D G 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

  • 图 1  考虑地球曲率后的声传播 (a) 对称截面; (b) $ (l, \theta ) $平面上的雅可比场几何示意图

    Figure 1.  Sound propagation considering the earth curvature: (a) Symmetrical section; (b) geometric structure of Jacobi field.

    图 2  考虑地球曲率前后所选声线的截面曲率 (a) 660 s内50根声线的截面曲率; (b) 入射角${\alpha _0}{\text{ = }}{0^\circ }$的声线形成第一个焦散点前的截面曲率

    Figure 2.  Section curvature before and after considering the earth curvature: (a) Section curvature of 50 sound lines in 660 s; (b) section curvature of sound line with elevation angle ${\alpha _0}{\text{ = }}{0^\circ }$ before forming the first caustic.

    图 3  660 s内所选50根声线的雅可比场$ {Y_1}(t) $

    Figure 3.  Jacobi field $ {Y_1}(t) $ of 50 sound lines in 660 s.

    图 4  弯曲声道中的声线、会聚区和焦散点 (a) 全图; (b) 细节图

    Figure 4.  Ray, convergence zone and caustics in curved sound channel: (a) Full picture; (b) details picture.

    图 5  考虑地球曲率前后的声线和焦散线 (a) 全图; (b) 上反转点焦散线; (c) 下反转点焦散线

    Figure 5.  Rays and caustics before and after considering the earth curvature: (a) Full picture; (b) upper turning point caustics; (c) lower turning point caustics.

    图 6  考虑地球曲率前后的声线和会聚区

    Figure 6.  Rays and convergence zones before and after considering the earth curvature.

    图 7  考虑地球曲率后会聚区偏移的距离

    Figure 7.  Movement of the convergence zone after considering the earth curvature.

    图 8  不同接收深度处考虑地球曲率和不考虑地球曲率的会聚区宽度 (a) 200 m; (b) 4000 m

    Figure 8.  The width of convergence zone considering and not considering earth curvature at the two different receiver depths: (a) 200 m; (b) 4000 m.

    图 9  不同几何扩展损失阈值下的会聚区 (a) $ \beta = 25 $ dB; (b) $ \beta = 15 $ dB

    Figure 9.  Convergence zones at two different geometric spread loss thresholds $ \beta $: (a) $ \beta = 25 $ dB; (b) $ \beta = 15 $ dB.

    图 10  不同声源深度的焦散点与会聚区 (a) 150 m; (b) 300 m

    Figure 10.  Convergence zones at two different source depths: (a) 150 m; (b) 300 m.

    图 11  黎曼几何与简正波法计算的会聚区对比图 (a) 黎曼几何理论计算的会聚区 (b) 简正波法(Kraken软件)计算的会聚区

    Figure 11.  The convergence zones by Riemann-Geometry and Normal-Mode theory: (a) Based on Riemann-Geometry Theory ; (b) based on Normal-Modes (Kraken).

    表 1  考虑地球曲率前后Munk声速剖面下截面曲率对比

    Table 1.  Comparison of sectional curvature of Munk sound speed profile.

    $ K \gt 0 $$ K = 0 $$ K \lt 0 $$ {K_{\max }} $
    考虑地球曲率$ \hat z \lt 4519 $ m$ \hat z = 4519 $ m$ \hat z \gt 4519 $ m0.2878
    不考虑地球曲率$ z \lt 4510 $ m$ z = 4510 $ m$ z \gt 4510 $ m0.2877
    DownLoad: CSV

    表 2  考虑地球曲率后会聚区向声源方向前移距离

    Table 2.  Distance of convergence zone moving forward towards sound source after considering the earth curvature.

    第4个会聚区第9个会聚区第16个会聚区
    上反转点会聚区前移距离/km2.55.59.6
    下反转点会聚区前移距离/km2.35.49.7
    DownLoad: CSV
    Baidu
  • [1]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348

    [4]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [5]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin. Phys. Mech. Astron. 46 094303Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust 7 75Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust 1 28

    [8]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    Tolstoy I, Clay C S 1987 Ocean Acoustics: Theory and Experiment in Underwater Sound (New York: American Institute of Physics) p20

    [10]

    Wu S L, Li Z L, Qin J X, Wang M Y, Li W 2022 J. Mar. Sci. Eng. 10 424Google Scholar

    [11]

    庄益夫, 张旭, 刘艳 2013 海洋通报 32 45Google Scholar

    Zhuang Y F, Zhang X, Liu Y 2013 Mar. Sci. Bull. 32 45Google Scholar

    [12]

    张晶晶, 罗博 2017 声学与电子工程 2017 8

    Zhang J J, Luo B 2017 Acoust. Electron. Eng. 2017 8

    [13]

    Yang Y, Guo L H, Gong Z X 2020 Global Oceans 2020: Singapore–U. S. Gulf Coast Electr Network, October 5–30, 2021 p2021-10-08

    [14]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 12 417Google Scholar

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 12 417Google Scholar

    [15]

    Vadov R A 2005 Acoust. Phys. 51 265Google Scholar

    [16]

    徐传秀, 朴胜春, 张红星, 杨士莪, 张海刚, 周建波 2015 声学技术 34 79

    Xu C X, Piao S C, Zhang H X, Yang S E, Zhang H G, Zhou J B 2015 Tech. Acoust. 34 79

    [17]

    毕思昭, 彭朝晖 2021 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Munk W H, O'Reilly W C, Reid J L 1988 J. Phys. Oceanogr. 18 1876Google Scholar

    [19]

    Yan J, Kang K Y 1995 Appl. Acoust. 45 9Google Scholar

    [20]

    Yan J 1999 Appl. Acoust. 57 163Google Scholar

    [21]

    郭肖晋, 马树青, 张理论, 蓝强, 黄创霞 2022 72 044302Google Scholar

    [22]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社 第267页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [23]

    刘伯胜, 雷家煜 2010 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) p77 (in Chinese)

    [24]

    Cheeger J, Ebin D G 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

  • [1] Guo Xiao-Jin, Ma Shu-Qing, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation—Basic theory. Acta Physica Sinica, 2023, 72(4): 044302. doi: 10.7498/aps.72.20221451
    [2] Wu Shuang-Lin, Li Zheng-Lin, Qin Ji-Xing, Wang Meng-Yuan, Dong Fan-Chen. Influence of tropical dipole in the East Indian Ocean on acoustic convergence region. Acta Physica Sinica, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] Zhang Hai-Gang, Ma Zhi-Kang, Gong Li-Jia, Zhang Ming-Hui, Zhou Jian-Bo. Effect of acoustic diffraction phase shift on caustic structure in deep sea convergence zone. Acta Physica Sinica, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [4] Liu Yang-Xi-Zi, Xiang Zheng, Guo Jian-Guang, Gu Xu-Dong, Fu Song, Zhou Ruo-Xian, Hua Man, Zhu Qi, Yi Juan, Ni Bin-Bin. Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region. Acta Physica Sinica, 2021, 70(14): 149401. doi: 10.7498/aps.70.20202029
    [5] Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui. Lower turning point convegence zone in deep water with an incomplete channel. Acta Physica Sinica, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [6] Bi Si-Zhao, Peng Zhao-Hui. Effect of earth curvature on long range sound propagation. Acta Physica Sinica, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [7] Jiang Guang-Yu, Sun Chao, Li Qin-Ran. Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [8] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [9] Li Sheng-Hao, Li Zheng-Lin, Li Wen, Qin Ji-Xing. Horizontal refraction effects of seamounts on sound propagation in deep water. Acta Physica Sinica, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [10] Sun Mei, Zhou Shi-Hong. Complex acoustic intensity with deep receiver in the direct-arrival zone in deep water and sound-ray-arrival-angle estimation. Acta Physica Sinica, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [11] Sun Mei, Zhou Shi-Hong, Li Zheng-Lin. Analysis of sound propagation in the direct-arrival zone in deep water with a vector sensor and its application. Acta Physica Sinica, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [12] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [13] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng, Wu Qin. Image smoothing model based on the combination of the gradient and curvature. Acta Physica Sinica, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [14] Wu Teng-Fei, Zhou Chang-Le, Wang Xiao-Hua, Huang Xiao-Xi, Chen Zhi-Qun, Wang Rong-Bo. Microblog propagation network model based on mean-field theory. Acta Physica Sinica, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [15] Chen Li-Juan, Lu Shi-Ping. The periodic problem of drift motion of the guidance center in the earth’s magnetosphere electromagnetic field. Acta Physica Sinica, 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [16] Ren Dian-Bo, Zhang Jing-Ming, Wang Cong. Virtual trajectory model for lane changing of a vehicle on curved road with variable curvature. Acta Physica Sinica, 2014, 63(7): 078902. doi: 10.7498/aps.63.078902
    [17] Wang Jing, Ma Rui-Ling, Wang Long, Meng Jun-Min. Numerical simulation of the spread of internal waves see from deep sea to shallow sea from the mixed model. Acta Physica Sinica, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [18] Li Qi, Zhang Bo, Li Zhao-Ji. A new analytical model of breakdown voltage for the SD LDMOS. Acta Physica Sinica, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [19] Zhou Xiao-Hua, Zhang Shao-Guang, Yang Ji-Qing, Qu Xue-Min, Liu Yuan-Sheng, Wang Si-Gang. Some new limiting vesicles and typical phase transforms and abruptions processes studied using the spontaneous-curvature model. Acta Physica Sinica, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [20] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
Metrics
  • Abstract views:  4202
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2022
  • Accepted Date:  06 December 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map