搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含气泡液体中的非线性声传播

王勇 林书玉 张小丽

引用本文:
Citation:

含气泡液体中的非线性声传播

王勇, 林书玉, 张小丽

Propagation of nonlinear waves in the bubbly liquids

Wang Yong, Lin Shu-Yu, Zhang Xiao-Li
PDF
导出引用
  • 考虑到分布在液体中的气泡是声波在含气泡液体中传播时引起非线性的一个很重要的因素,本文研究了声波在含气泡液体中的非线性传播. 将气体含量的影响引入到声波在液体中传播的方程中,从而得到声波在气液混合物中传播的数学模型. 通过对该模型进行数值模拟发现,气体含量、驱动声场声压幅值及驱动声场作用时间均会影响到气液混合物中的声场分布及声压幅值大小. 液体中的气泡会“阻滞”液体中声场的传播并将能量“聚集”在声源附近. 对于连续大功率的驱动声场来说,液体中的气泡会“阻滞”气液混合物中声场及其能量的传播.
    An important factor that causes the nonlinearity in the bubbly liquids when the acoustic wave is propagating is the bubbles. So we study the nonlinear propagation of acoustic waves in the bubbly liquids. The influence of the gas content is introduced into the equation of the wave propagation in the liquid, so one can get the model of wave propagation in the bubbly liquids. Through numerical simulation of the model one can get the gas content, the pressure amplitude of driving sound and the acting time of the driving sound can all affect the distribution of the sound field and the pressure amplitude of the wave in the bubbly liquids. The bubbles in the liquid will “block” the acoustic wave to propagate and “gather” the energy near the sound source field. For continuous and high power driving sound, the bubbles in the liquid will “block” the wave propagation and the transmission of energy.
    • 基金项目: 研究生培养创新基金(陕西师范大学)(批准号:2012CXB014)和国家自然科学基金(批准号:11174192)资助的课题.
    • Funds: Project supported by the Innovation Funds of Graduate Programs of Shaanxi Normal University (Grant No. 2012CXB014), and the National Natural Science Foundation of China (Grant No. 11174192).
    [1]

    Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369

    [2]

    Caflish R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259

    [3]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1

    [4]

    Jordan P M, Feuillade C 2004 Int. J. Eng. Sci. 42 1119

    [5]

    Jordan P M, Feuillade C 2006 Phys. Lett. A 350 56

    [6]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]

    [8]

    Wang H B 2006 Ship Engineering 28 30 (in Chinese) [王虹斌 2006 船舶工程 28 30]

    [9]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [10]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [11]

    Ye Z 1997 J. Acoust. Soc. Am. 101 809

    [12]

    Doinikov A A 2004 J. Acoust. Soc. Am. 116 821

    [13]

    Ye Z 1997 J. Acoust. Soc. Am. 102 1239

    [14]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931

    [15]

    Louisnard O 2010 Physics Procedia 3 735

    [16]

    Silva G T, Belohlavek M, McMahon E M, Fatemic M 2010 Physics Procedia 3 919

    [17]

    Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011

    [18]

    Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414

    [19]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842

    [20]

    Vanhille C, Campos Pozuelo C 2013 Ultrason. Sonochem. 20 963

    [21]

    Gumerov N A, Ohl C D, Akhatov I S, Sametov S P, Khasimullin M V 2013 J. Acoust. Soc. Am 133 3277

    [22]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [23]

    Foldy L L 1945 Phys. Rev. 67 107

  • [1]

    Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369

    [2]

    Caflish R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259

    [3]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1

    [4]

    Jordan P M, Feuillade C 2004 Int. J. Eng. Sci. 42 1119

    [5]

    Jordan P M, Feuillade C 2006 Phys. Lett. A 350 56

    [6]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]

    [8]

    Wang H B 2006 Ship Engineering 28 30 (in Chinese) [王虹斌 2006 船舶工程 28 30]

    [9]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [10]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [11]

    Ye Z 1997 J. Acoust. Soc. Am. 101 809

    [12]

    Doinikov A A 2004 J. Acoust. Soc. Am. 116 821

    [13]

    Ye Z 1997 J. Acoust. Soc. Am. 102 1239

    [14]

    Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931

    [15]

    Louisnard O 2010 Physics Procedia 3 735

    [16]

    Silva G T, Belohlavek M, McMahon E M, Fatemic M 2010 Physics Procedia 3 919

    [17]

    Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011

    [18]

    Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414

    [19]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842

    [20]

    Vanhille C, Campos Pozuelo C 2013 Ultrason. Sonochem. 20 963

    [21]

    Gumerov N A, Ohl C D, Akhatov I S, Sametov S P, Khasimullin M V 2013 J. Acoust. Soc. Am 133 3277

    [22]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [23]

    Foldy L L 1945 Phys. Rev. 67 107

  • [1] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [2] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律.  , 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [3] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析.  , 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [4] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2021, (): . doi: 10.7498/aps.70.20211266
    [5] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究.  , 2021, (): . doi: 10.7498/aps.70.20211132
    [6] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响.  , 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [7] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响.  , 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [8] 曹娜, 陈时, 曹辉, 王成会, 刘航. 非线性波动方程的新数值迭代方法.  , 2020, 69(3): 034301. doi: 10.7498/aps.69.20191440
    [9] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响.  , 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [10] 陈时, 张迪, 王成会, 张引红. 含混合气泡液体中声波共振传播的抑制效应.  , 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [11] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析.  , 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [12] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波.  , 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [13] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响.  , 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播.  , 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] 沈壮志. 声驻波场中空化泡的动力学特性.  , 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [16] 苗博雅, 安宇. 两种气泡混合的声空化.  , 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [17] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究.  , 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [18] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究.  , 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [19] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播.  , 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [20] 沈壮志, 林书玉. 声场中气泡运动的混沌特性.  , 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
计量
  • 文章访问数:  7263
  • PDF下载量:  1065
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-16
  • 修回日期:  2013-09-24
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map