-
An important factor that causes the nonlinearity in the bubbly liquids when the acoustic wave is propagating is the bubbles. So we study the nonlinear propagation of acoustic waves in the bubbly liquids. The influence of the gas content is introduced into the equation of the wave propagation in the liquid, so one can get the model of wave propagation in the bubbly liquids. Through numerical simulation of the model one can get the gas content, the pressure amplitude of driving sound and the acting time of the driving sound can all affect the distribution of the sound field and the pressure amplitude of the wave in the bubbly liquids. The bubbles in the liquid will “block” the acoustic wave to propagate and “gather” the energy near the sound source field. For continuous and high power driving sound, the bubbles in the liquid will “block” the wave propagation and the transmission of energy.
-
Keywords:
- nonlinear acoustic /
- bubbly liquids /
- wave propagation /
- acoustic cavitation
[1] Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369
[2] Caflish R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259
[3] Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1
[4] Jordan P M, Feuillade C 2004 Int. J. Eng. Sci. 42 1119
[5] Jordan P M, Feuillade C 2006 Phys. Lett. A 350 56
[6] Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
[7] Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]
[8] Wang H B 2006 Ship Engineering 28 30 (in Chinese) [王虹斌 2006 船舶工程 28 30]
[9] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628
[10] Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502
[11] Ye Z 1997 J. Acoust. Soc. Am. 101 809
[12] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[13] Ye Z 1997 J. Acoust. Soc. Am. 102 1239
[14] Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931
[15] Louisnard O 2010 Physics Procedia 3 735
[16] Silva G T, Belohlavek M, McMahon E M, Fatemic M 2010 Physics Procedia 3 919
[17] Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011
[18] Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414
[19] Jamshidi R, Brenner G 2013 Ultrasonics 53 842
[20] Vanhille C, Campos Pozuelo C 2013 Ultrason. Sonochem. 20 963
[21] Gumerov N A, Ohl C D, Akhatov I S, Sametov S P, Khasimullin M V 2013 J. Acoust. Soc. Am 133 3277
[22] Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457
[23] Foldy L L 1945 Phys. Rev. 67 107
-
[1] Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369
[2] Caflish R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259
[3] Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1
[4] Jordan P M, Feuillade C 2004 Int. J. Eng. Sci. 42 1119
[5] Jordan P M, Feuillade C 2006 Phys. Lett. A 350 56
[6] Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
[7] Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]
[8] Wang H B 2006 Ship Engineering 28 30 (in Chinese) [王虹斌 2006 船舶工程 28 30]
[9] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628
[10] Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502
[11] Ye Z 1997 J. Acoust. Soc. Am. 101 809
[12] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[13] Ye Z 1997 J. Acoust. Soc. Am. 102 1239
[14] Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931
[15] Louisnard O 2010 Physics Procedia 3 735
[16] Silva G T, Belohlavek M, McMahon E M, Fatemic M 2010 Physics Procedia 3 919
[17] Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011
[18] Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414
[19] Jamshidi R, Brenner G 2013 Ultrasonics 53 842
[20] Vanhille C, Campos Pozuelo C 2013 Ultrason. Sonochem. 20 963
[21] Gumerov N A, Ohl C D, Akhatov I S, Sametov S P, Khasimullin M V 2013 J. Acoust. Soc. Am 133 3277
[22] Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457
[23] Foldy L L 1945 Phys. Rev. 67 107
Catalog
Metrics
- Abstract views: 7264
- PDF Downloads: 1065
- Cited By: 0