Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of backscattered electric field of chipless radio frequency identification tag based on Rydberg atoms

Yan Li-Yun Liu Jia-Sheng Zhang Hao Zhang Lin-Jie Xiao Lian-Tuan Jia Suo-Tang

Citation:

Measurement of backscattered electric field of chipless radio frequency identification tag based on Rydberg atoms

Yan Li-Yun, Liu Jia-Sheng, Zhang Hao, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Chipless radio frequency identification tags have been widely used in many areas, such as vehicle recognition and identification of goods. Near-field measurement of a chipless radio frequency identification tag is important for offering the precise spatial information of the backscattered field of tag. In this paper, we demonstrate the angle discrimination of a line-shape chipless radio-frequency identification tag via the near-field measurements of scattered electric fields in two orthogonal directions. Two laser beams with different frequencies counter propagate and pass through a roomtemperature caesium vapor. A Rydberg ladder-type system is formed in the experiment, which includes three levels, namely 6S1/2, 6P3/2, 51D5/2. The electromagnetically induced transparency of transmission of probe light, which is locked to the transition of 6S1/2↔ 6P3/2, is observed when the frequency of coupling light varies nearby the transition of 6P3/2↔ 51D5/2. When the 5.366 GHz microwave electric field that is resonant with the transition between two adjacent Rydberg states 51D5/2↔ 52P3/2 is applied to the caesium vapor cell by using a standard-gain horn antenna, the transmission signal of probe laser splits into two peaks, which is known as Autler-Townes splitting. The splitting between the transmission peaks is proportional to the microwave electric field strength at the position of laser beam. The spatial distribution of backscattered microwave electric field of the chipless radio-frequency identification tag is obtained through varying the position of the laser beam. The spatial resolution of near-field measurement approximately equals λMW/12, where λMW is the wavelength of the measured microwave electric field. The distributions of the electric field strength in two orthogonal directions show the clarity difference while the angle of radio-frequency identification tag is changed. The scattered electric field strength of the identification tag is strongest when the angle of line-shape tag is the same as that of the polarization of the horn antenna. Moreover, the scattered field strength of identification tag in the incident field direction of the horn antenna increases as the measured position and the identification tag get closer to each other. The scattered electric field distributions in the vertical direction are almost constant at the different angles between the incident electric filed and identification tag. The fluctuation of spatial distribution of the scattered electric field strength is attributed to the Fabry-Pérot effect of microwave electric field in the vapor cell. And the geometry of vapor cell results in the minor asymmetric distribution of scattered field. The simulation results from the electromagnetic simulation software are accordant with the experimental results. The novel approach to near-field measurement of identification tag will contribute to studying and designing the chipless radio-frequency identification tag and complex circuits.
      Corresponding author: Zhang Lin-Jie, zlj@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200, 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 61378013, 91536110, 61505099), and the Fund for Shanxi "1331Project" Key Subjects Construction.
    [1]

    Vena A, Perret E, Tedjini S 2011 IEEE Trans. Microw. Theory Tech. 59 3356

    [2]

    Yan L Y, Zhang W M 2016 J. Test Measur. Technol. 30 62 (in Chinese) [闫丽云, 张文梅 2016 测试技术学报 30 62]

    [3]

    Cown B J, Ryan C J 1989 IEEE Trans. Antennas Propag. 37 576

    [4]

    Wu Y, Xue Z, Ren W, Li W M, Xu X W 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) Shanghai, China, November 6-9, 2012 p72

    [5]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [6]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [7]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p11

    [8]

    Sedlacek J A, Schwettmann A, Kbler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [9]

    Kumar S, Fan H Q, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [11]

    Fan H Q, Kumar S, Daschner R, Kbler H, Shaffer J P 2014 Opt. Lett. 39 3030

    [12]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J 2015 Phys. Rev. Appl. 4 044015

    [13]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]

    [14]

    Anderson D A, Miller S A, Raithel G 2016 Phys. Rev. Appl. 5 034003

    [15]

    Horsley A, Du G X, Treutlein P 2015 New J. Phys. 17 112002

    [16]

    Bohi P, Treutlein P 2012 Appl. Phys. Lett. 101 181107

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Zhou J, Zhang W Q, Hao Y M, Jin T, Jiang X H, Zhang H, Zhang L J 2016 J. Quantum Opt. 22 311 (in Chinese) [周健, 张玮茜, 郝艳梅, 金桐, 蒋徐浩, 张好, 张临杰 2016 量子光学学报 22 311]

    [19]

    Liu J S, Zhang H, Song Z F, Zhang L J, Jia S T 2016 IEEE MTT-S International Conference Beijing, China, July 27-29, 2016 p1

  • [1]

    Vena A, Perret E, Tedjini S 2011 IEEE Trans. Microw. Theory Tech. 59 3356

    [2]

    Yan L Y, Zhang W M 2016 J. Test Measur. Technol. 30 62 (in Chinese) [闫丽云, 张文梅 2016 测试技术学报 30 62]

    [3]

    Cown B J, Ryan C J 1989 IEEE Trans. Antennas Propag. 37 576

    [4]

    Wu Y, Xue Z, Ren W, Li W M, Xu X W 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) Shanghai, China, November 6-9, 2012 p72

    [5]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [6]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [7]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p11

    [8]

    Sedlacek J A, Schwettmann A, Kbler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [9]

    Kumar S, Fan H Q, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [11]

    Fan H Q, Kumar S, Daschner R, Kbler H, Shaffer J P 2014 Opt. Lett. 39 3030

    [12]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J 2015 Phys. Rev. Appl. 4 044015

    [13]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]

    [14]

    Anderson D A, Miller S A, Raithel G 2016 Phys. Rev. Appl. 5 034003

    [15]

    Horsley A, Du G X, Treutlein P 2015 New J. Phys. 17 112002

    [16]

    Bohi P, Treutlein P 2012 Appl. Phys. Lett. 101 181107

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Zhou J, Zhang W Q, Hao Y M, Jin T, Jiang X H, Zhang H, Zhang L J 2016 J. Quantum Opt. 22 311 (in Chinese) [周健, 张玮茜, 郝艳梅, 金桐, 蒋徐浩, 张好, 张临杰 2016 量子光学学报 22 311]

    [19]

    Liu J S, Zhang H, Song Z F, Zhang L J, Jia S T 2016 IEEE MTT-S International Conference Beijing, China, July 27-29, 2016 p1

  • [1] Han Xiao-Xuan, Sun Guang-Zu, Hao Li-Ping, Bai Su-Ying, Jiao Yue-Chun. Sensitivity of radio-frequency electric field sensor based on Rydberg Stark effect. Acta Physica Sinica, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [2] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields. Acta Physica Sinica, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [3] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [4] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [5] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [6] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [7] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [8] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [9] Liu Jian-Ji, Liu Jia-Chen, Zhang Guo-Quan. Optical image addition and subtraction based on electromagnetically induced transparency effect. Acta Physica Sinica, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [10] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [11] Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Physica Sinica, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [12] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [13] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [14] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [15] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [16] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [17] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [18] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [19] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [20] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
Metrics
  • Abstract views:  5894
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2017
  • Accepted Date:  20 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map