搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁感应透明效应的光学图像加减

刘建基 刘甲琛 张国权

引用本文:
Citation:

基于电磁感应透明效应的光学图像加减

刘建基, 刘甲琛, 张国权

Optical image addition and subtraction based on electromagnetically induced transparency effect

Liu Jian-Ji, Liu Jia-Chen, Zhang Guo-Quan
PDF
HTML
导出引用
  • 电磁感应透明效应是基于原子不同跃迁通道之间的量子相干效应, 可以使得原子系综对于光场的吸收率降低, 甚至接近于0, 同时在原子共振频率附近伴随着强烈的色散, 因而被广泛应用于群速度调控、光脉冲存储和光场的相干调控等领域. 本文基于电磁感应透明效应, 通过信号光场、耦合光场和读取光场操控复现光场, 在4$f$系统的像面上实现了光学图像的加减操作. 相较于通常在频谱面上利用余弦光栅进行滤波的方案, 基于电磁感应透明效应的方案无需制备频谱面滤波掩膜版, 并且只产生正一级和负一级衍射图像, 无0级衍射图像干扰, 可广泛应用于光学图像的动态实时处理.
    The electromagnetically induced transparency (EIT) effect is a quantum coherence effect between different atomic transition channels. The absorption of the atomic ensemble is significantly reduced or even close to zero, and at the same time, this effect is accompanied by strong spectral dispersion near the resonant frequency of atoms, which is widely used in group velocity control, light pulse storage, and coherent manipulation on the light field. In the light pulse storage based on the EIT effect, the retrieval field is determined by the signal, coupling, and readout fields, enabling the retrieval field to be dynamically controlled by manipulating the spatial frequency components of the interacting light fields. In this paper, according to the EIT effect, we achieve experimentally the optical image addition and subtraction in the imaging plane of a 4$f$ system through the coherent manipulation of the retrieval field via the interacting signal, coupling, and readout fields. Specifically, we first store the spatial frequency spectrum of a double-slit mask in the praseodymium-doped yttrium silicate crystal located in the confocal plane of the 4$f$ system based on the EIT effect. Then, we utilize a specially designed mask containing the target objects and perform spatial filtering by using the spatial frequency spectrum of the double-slit mask through the retrieval of stored light pulse. By moving the double-slit mask, the addition and subtraction between the images of target objects can be achieved in the imaging plane of the 4$f$ system. We present a theoretical model to describe the addition and subtraction between the target images through the EIT-based light pulse storage technique. The experimental results accord well with the theoretical prediction. Compared with the traditional scheme with a cosine grating filtering the spatial frequency spectrum, our method does not require the preparation of a spatial frequency filter, and only produces the first-order positive and negative diffraction images without the influence of the zeroth-order diffraction image. The optical image addition and subtraction based on the EIT effect provide a new approach to optical image processing. This approach is not limited to image addition or subtraction, and it can be extended to achieve more complex operations such as differentiation, enhancement, encryption, and decryption with rational design. Therefore, it can be widely used in areas such as coherent manipulation of light fields and dynamic optical image processing.
      通信作者: 张国权, gqzhang@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104242, 91750204, 61475077)、高等学校学科创新引智计划(批准号: B23045)和中央高校基本科研业务费资助的课题
      Corresponding author: Zhang Guo-Quan, gqzhang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104242, 91750204, 61475077), the 111 Project (Grant No. B23045), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Alfalou A, Brosseau C 2015 Prog. Optics 60 119

    [2]

    Chakraborty S, Saha A, Bhattacharya K 2014 Optik 125 6466Google Scholar

    [3]

    Gabor D, Stroke G W, Restrick Ⅲ R C, Funkhouser A T, Brumm D 1965 Phys. Lett. 18 116Google Scholar

    [4]

    Ebersole J F 1975 Opt. Eng. 14 436

    [5]

    母国光, 蒋建国, 刘国华 1981 30 1609Google Scholar

    Mu G G, Jiang J H, Liu G H 1981 Acta Phys. Sin. 30 1609Google Scholar

    [6]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [7]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [8]

    Wang J, Zhu Y, Jiang K J, Zhan M S 2003 Phys. Rev. A 68 063810Google Scholar

    [9]

    Braje D A, Balić V, Goda S, Yin G Y, Harris S E 2004 Phys. Rev. Lett. 93 183601Google Scholar

    [10]

    Yan H, Liao K Y, Li J F, Du Y X, Zhang Z M, Zhu S L 2013 Phys. Rev. A 87 055401Google Scholar

    [11]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [12]

    Ham B S, Hubrich C, Halfmann T 1997 Opt. Commun. 144 227Google Scholar

    [13]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [14]

    Qiu T H, Xie M 2017 Phys. Rev. A 96 033844Google Scholar

    [15]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602Google Scholar

    [16]

    Hamedi H R, Kudriasov V, Ruseckas J, Juzeliunas G 2018 Opt. Express 26 28249Google Scholar

    [17]

    Zhao L 2015 Opt. Express 23 29808Google Scholar

    [18]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [19]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [20]

    Qiu T H, Ma H Y, Xin P P, Zhao X L, Liu Q, Chen L B, Feng Y C, Yu Z X 2022 Eur. Phys. J. Plus 137 126

    [21]

    Tu Y F, Zhang G G, Zhai Z H, Xu J J 2009 Phys. Rev. A 80 033816Google Scholar

    [22]

    翟召辉 2013 博士学位论文 (天津: 南开大学)

    Zhai Z H 2013 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [23]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [24]

    Zhai Z H, Li Z X, Xu J J, Zhang G Q 2013 Phys. Rev. A 88 035807Google Scholar

    [25]

    Zhai Z H, Dou Y L, Xu J J, Zhang G Q 2011 Phys. Rev. A 83 043825Google Scholar

    [26]

    Li Z X, Liu J J, Fan H M, Liu J C, Zhang G Q 2017 Sci. Rep. 7 2361Google Scholar

    [27]

    李志向, 刘建基, 范洪鸣, 张国权 2017 光学学报 37 0207003Google Scholar

    Li Z X, Liu J J, Fan H M, Zhang G Q 2017 Acta Opt. Sin. 37 0207003Google Scholar

    [28]

    涂燕飞 2009 博士学位论文 (天津: 南开大学)

    Tu Y F 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

  • 图 1  (a) Pr:YSO晶体中Pr离子参与EIT效应的能级结构图, 其中, ΩS, ΩC, ΩR, ΩS′分别为信号光、耦合光、读取光、复现光对应的拉比频率; (b)基于EIT效应实现图像加减操作的实验装置示意图, 其中, BS为50∶50分束器, Lens为焦距300 mm的凸透镜, iCCD为增强型CCD; 掩膜版M为待处理的图像, 掩膜版O为双缝; Pr:YSO晶体置于3.4 K的低温腔中

    Fig. 1.  (a) Energy level structure of Pr ions involved in the EIT process in Pr:YSO crystal. Here, ΩS, ΩC, ΩR, ΩS′ are the Rabi frequencies of the signal, coupling, readout, and retrieval fields, respectively. (b) Schematic diagram of the experimental setup for image addition and subtraction based on the EIT effect. Here, BS, 50∶50 beam splitter; Lens, convex lens with a 300-mm focal length; iCCD, intensified CCD. The mask M is the image to be processed, and the mask O is a double-slit mask. The Pr:YSO crystal is placed in a cryogenic vacuum chamber at 3.4 K

    图 2  Pr:YSO晶体中电磁感应透明效应Λ型三能级系统初态制备流程图

    Fig. 2.  Flow diagram to prepare the initial state for the EIT effect with a Λ-type three-level scheme of $ {\rm Pr}^{3+} $ ions in Pr:YSO crystal

    图 3  物面掩膜版 (a)图像相加操作时带有待处理图像的掩膜版; (b)图像相减操作时带有待处理图像的掩膜版; (c)用于制备频谱面滤波光栅的双缝掩膜版

    Fig. 3.  Masks on the object planes: (a) Mask with the images to be processed for image addition; (b) mask with the images to be processed for image subtraction; (c) double-slit mask used to prepare the diffraction grating filter on the Fourier spectral plane

    图 4  光学图像相加理论模拟图(a)和实验结果图(b). 左侧的两个短矩形图案和右侧的单个短矩形图案在像面中心实现了相加

    Fig. 4.  Theoretical simulation result (a) and the experimental result (b) for optical image addition. The two short rectangles on the left and the single short rectangle on the right are added at the center of the image plane

    图 5  光学图像相减理论模拟图(a)和实验结果图(b). 左侧的长矩形图案和右侧的短矩形图案在像面中心实现了相减, 产生了上下两个短矩形图案

    Fig. 5.  Theoretical simulation result (a) and the experimental result (b) for optical image subtraction. The long rectangle on the left and the short rectangle on the right are subtracted at the center of the image plane, producing two separated short rectangles

    Baidu
  • [1]

    Alfalou A, Brosseau C 2015 Prog. Optics 60 119

    [2]

    Chakraborty S, Saha A, Bhattacharya K 2014 Optik 125 6466Google Scholar

    [3]

    Gabor D, Stroke G W, Restrick Ⅲ R C, Funkhouser A T, Brumm D 1965 Phys. Lett. 18 116Google Scholar

    [4]

    Ebersole J F 1975 Opt. Eng. 14 436

    [5]

    母国光, 蒋建国, 刘国华 1981 30 1609Google Scholar

    Mu G G, Jiang J H, Liu G H 1981 Acta Phys. Sin. 30 1609Google Scholar

    [6]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [7]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [8]

    Wang J, Zhu Y, Jiang K J, Zhan M S 2003 Phys. Rev. A 68 063810Google Scholar

    [9]

    Braje D A, Balić V, Goda S, Yin G Y, Harris S E 2004 Phys. Rev. Lett. 93 183601Google Scholar

    [10]

    Yan H, Liao K Y, Li J F, Du Y X, Zhang Z M, Zhu S L 2013 Phys. Rev. A 87 055401Google Scholar

    [11]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [12]

    Ham B S, Hubrich C, Halfmann T 1997 Opt. Commun. 144 227Google Scholar

    [13]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [14]

    Qiu T H, Xie M 2017 Phys. Rev. A 96 033844Google Scholar

    [15]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602Google Scholar

    [16]

    Hamedi H R, Kudriasov V, Ruseckas J, Juzeliunas G 2018 Opt. Express 26 28249Google Scholar

    [17]

    Zhao L 2015 Opt. Express 23 29808Google Scholar

    [18]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [19]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [20]

    Qiu T H, Ma H Y, Xin P P, Zhao X L, Liu Q, Chen L B, Feng Y C, Yu Z X 2022 Eur. Phys. J. Plus 137 126

    [21]

    Tu Y F, Zhang G G, Zhai Z H, Xu J J 2009 Phys. Rev. A 80 033816Google Scholar

    [22]

    翟召辉 2013 博士学位论文 (天津: 南开大学)

    Zhai Z H 2013 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [23]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [24]

    Zhai Z H, Li Z X, Xu J J, Zhang G Q 2013 Phys. Rev. A 88 035807Google Scholar

    [25]

    Zhai Z H, Dou Y L, Xu J J, Zhang G Q 2011 Phys. Rev. A 83 043825Google Scholar

    [26]

    Li Z X, Liu J J, Fan H M, Liu J C, Zhang G Q 2017 Sci. Rep. 7 2361Google Scholar

    [27]

    李志向, 刘建基, 范洪鸣, 张国权 2017 光学学报 37 0207003Google Scholar

    Li Z X, Liu J J, Fan H M, Zhang G Q 2017 Acta Opt. Sin. 37 0207003Google Scholar

    [28]

    涂燕飞 2009 博士学位论文 (天津: 南开大学)

    Tu Y F 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

  • [1] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱.  , 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原.  , 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用.  , 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [6] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法.  , 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [7] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [8] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱.  , 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [9] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控.  , 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [11] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量.  , 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [12] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [13] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [14] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展.  , 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [15] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [16] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [17] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [18] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  3718
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2023-03-05
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map