Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-body entanglement in a dilute gas of Rydberg atoms

Zhang Qin-Rong Wang Bin-Bin Zhang Meng-Long Yan Dong

Citation:

Two-body entanglement in a dilute gas of Rydberg atoms

Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the establishment of quantum mechanics, quantum entanglement has become one of the most important realms in quantum physics. On the one hand, it reflects some of the most fascinating features, such as quantum coherence, probability and non-locality and so on. On the other hand, it proves to be an indispensable resource of quantum information processing and quantum computation, which is considered to greatly promote the development of human science and technology. In the past decades, inspired by advances in quantum information theory and quantum physics, people have been searching for suitable systems with great enthusiasm to prepare the robust and manipulable quantum entanglement. Recently, Rydberg atoms have been considered to be a good candidate for many quantum information and quantum computation tasks. Compared with general neutral atoms, Rydberg atoms with large principal quantum number have several advantages in the quantum information and computation service. Firstly, they have finite lifetimes much larger than general neutral atoms, which indicates that the long-time entanglement between Rydberg atoms can be achieved. Secondly, due to the high-excitation level, Rydberg-excitation atoms have long-ranged dipole-dipole interaction much stronger than ground state atoms. This strong atomic interaction leads to the so-called blockade effect: when one atom is excited to Rydberg level, the excitation of the neighboring atoms will be strictly suppressed due to the energy shift induced by the strong atomic interaction. On the contrast, if the energy shift is compensated for by the detuning between the energy levels and the driven laser field, these atoms can be excited with higher probability simultaneously. These effects imply that Rydberg atoms provide an excellent platform for investigating the quantum information and quantum computation process, and many important achievements based on them have been achieved. Encouraged by these researches on entanglement and Rydberg atoms, in this paper, we study the steady-state and transient dynamical properties of two-body entanglement and the Rydberg-excitation properties in a dilute gas of Rydberg atoms, which can be represented by a tetrahedrally arranged interacting four-atom model. By solving numerically the master equation of four atoms involving Rydberg level, we investigate the higher-order Rydberg excitations and bipartite entanglement, which is estimated by concurrence. Our results show that the bipartite entanglement can only achieve its maximal value in the strongest dipole blockade regime rather than anti-blockade one (the high-order Rydberg excitations). Furthermore, the physical essence of quantum entanglement is analyzed theoretically in relevant regimes. Our work can naturally extend to more complicated atomic space structures, and might be treated as a good platform for fulfilling many quantum information tasks by employing the quantum entanglement.
      Corresponding author: Yan Dong, ydbest@126.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 11204019), the Science Foundation of Education Department of Jilin Province, China (Grant No. 2016287), and the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015M570260).
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [2]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [3]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [4]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Ct R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [5]

    Lukin M D, Fleischhauer M, Ct R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [6]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [7]

    Porras D, Cirac J I 2008 Phys. Rev. A 78 053816

    [8]

    Pedersen L H, Mlmer K 2009 Phys. Rev. A 79 012320

    [9]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [10]

    Tiarks D, Baur S, Schneider K, Drr S, Rempe G 2014 Phys. Rev. Lett. 113 053602

    [11]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [12]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [13]

    Ye S, Zhang X, Dunning F B, Yoshida S, Hiller M, Burgdrfer J 2014 Phys. Rev. A 90 013401

    [14]

    Labuhn H, Barredo D, Ravets S, de Lsleuc S, Macr T, Lahaye T, Browaeys A 2016 Nature 534 667

    [15]

    Gillet J, Agarwal G S, Bastin T 2010 Phys. Rev. A 81 013837

    [16]

    Fan C H, Yan D, Liu Y M, Wu J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 115501

    [17]

    Lee T E, Hffner H, Cross M C 2011 Phys. Rev. A 84 031402

    [18]

    Lee T E, Hffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602

    [19]

    ibali N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Phys. Rev. A 94 011401

    [20]

    Dauphin A, Mller M, Martin-Delgado M A 2016 Phys. Rev. A 93 043611

    [21]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601

    [22]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828

    [23]

    Grttner M, Whitlock S, Schnleber D W, Evers J 2014 Phys. Rev. Lett. 113 233002

    [24]

    Carmele A, Vogell B, Stannigel K, Zoller P 2014 New J. Phys. 16 063042

    [25]

    Weber T M, Hning M, Niederprm T, Manthey T, Thomas O, Guarrera V, Fleischhauer M, Barontini G, Ott H 2015 Nat. Phys. 11 157

    [26]

    Zeiher J, Schau P, Hild S, Macr T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [27]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408

    [28]

    Ates C, Pohl T, Pattard T, Rost J M 2007 Phys. Rev. A 76 013413

    [29]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [30]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [31]

    Yan D, Song L J 2010 Acta Phys. Sin. 59 6832 (in Chinese) [严冬, 宋立军 2010 59 6832]

    [32]

    Ates C, Pohl T, Pattard T, Rost J M 2007 Phys. Rev. Lett. 98 023002

    [33]

    Amthor T, Giese C, Hofmann C S, Weidemller M 2010 Phys. Rev. Lett. 104 013001

    [34]

    Honer J, Lw R, Weimer H, Pfau T, Bchler H P 2011 Phys. Rev. Lett. 107 093601

  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [2]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [3]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [4]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Ct R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [5]

    Lukin M D, Fleischhauer M, Ct R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [6]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [7]

    Porras D, Cirac J I 2008 Phys. Rev. A 78 053816

    [8]

    Pedersen L H, Mlmer K 2009 Phys. Rev. A 79 012320

    [9]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [10]

    Tiarks D, Baur S, Schneider K, Drr S, Rempe G 2014 Phys. Rev. Lett. 113 053602

    [11]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [12]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [13]

    Ye S, Zhang X, Dunning F B, Yoshida S, Hiller M, Burgdrfer J 2014 Phys. Rev. A 90 013401

    [14]

    Labuhn H, Barredo D, Ravets S, de Lsleuc S, Macr T, Lahaye T, Browaeys A 2016 Nature 534 667

    [15]

    Gillet J, Agarwal G S, Bastin T 2010 Phys. Rev. A 81 013837

    [16]

    Fan C H, Yan D, Liu Y M, Wu J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 115501

    [17]

    Lee T E, Hffner H, Cross M C 2011 Phys. Rev. A 84 031402

    [18]

    Lee T E, Hffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602

    [19]

    ibali N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Phys. Rev. A 94 011401

    [20]

    Dauphin A, Mller M, Martin-Delgado M A 2016 Phys. Rev. A 93 043611

    [21]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601

    [22]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828

    [23]

    Grttner M, Whitlock S, Schnleber D W, Evers J 2014 Phys. Rev. Lett. 113 233002

    [24]

    Carmele A, Vogell B, Stannigel K, Zoller P 2014 New J. Phys. 16 063042

    [25]

    Weber T M, Hning M, Niederprm T, Manthey T, Thomas O, Guarrera V, Fleischhauer M, Barontini G, Ott H 2015 Nat. Phys. 11 157

    [26]

    Zeiher J, Schau P, Hild S, Macr T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [27]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408

    [28]

    Ates C, Pohl T, Pattard T, Rost J M 2007 Phys. Rev. A 76 013413

    [29]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [30]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [31]

    Yan D, Song L J 2010 Acta Phys. Sin. 59 6832 (in Chinese) [严冬, 宋立军 2010 59 6832]

    [32]

    Ates C, Pohl T, Pattard T, Rost J M 2007 Phys. Rev. Lett. 98 023002

    [33]

    Amthor T, Giese C, Hofmann C S, Weidemller M 2010 Phys. Rev. Lett. 104 013001

    [34]

    Honer J, Lw R, Weimer H, Pfau T, Bchler H P 2011 Phys. Rev. Lett. 107 093601

  • [1] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [2] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [3] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [4] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] Cheng Jing, Shan Chuan-Jia, Liu Ji-Bing, Huang Yan-Xia, Liu Tang-Kun. Geometric quantum discord in Tavis-Cummings model. Acta Physica Sinica, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [6] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [7] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [8] Feng Ling-Juan, Xia Yun-Jie. Entanglement evolution of three interacting twolevel atoms within a common environment. Acta Physica Sinica, 2015, 64(1): 010302. doi: 10.7498/aps.64.010302
    [9] He Zhi, Li Long-Wu. Quantum correlation dynamics of two two-level atoms in common environment. Acta Physica Sinica, 2013, 62(18): 180301. doi: 10.7498/aps.62.180301
    [10] Lu Dao-Ming. The entanglement properties in the system of a two three-level atoms trapped in coupled cavities. Acta Physica Sinica, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [11] Han Wei, Cui Wen-Kai, Zhang Ying-Jie, Xia Yun-Jie. Comparison of entanglement decay between Bell-like states under different environmental models. Acta Physica Sinica, 2012, 61(23): 230302. doi: 10.7498/aps.61.230302
    [12] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [13] Lu Dao-Ming. The entanglement properties in the system composed of a -type atom and a V-type atom trapped in two distant cavities connected by an optical fiber. Acta Physica Sinica, 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [14] Lu Dao-Ming. Entanglement properties in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [15] Guo De-Jun, Shan Chuan-Jia, Xia Yun-Jie. Entanglement evolution and Bell inequality violation of two atoms in Tavis-Cummings model with intrinsic decoherence. Acta Physica Sinica, 2007, 56(4): 2139-2147. doi: 10.7498/aps.56.2139
    [16] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [17] Shan Chuan-Jia, Xia Yun-Jie. The entanglement character of two entangled atoms in Tavis-Cummings model. Acta Physica Sinica, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [18] Zhou Qing-Chun, Zhu Shi-Ning. Entanglement of a Λ-type three-level atom with a single-mode field initially in the number state. Acta Physica Sinica, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [19] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  6634
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2017
  • Accepted Date:  25 October 2017
  • Published Online:  05 February 2018

/

返回文章
返回
Baidu
map