搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于射频场缀饰的直流电场Floquet-EIT光谱特性研究

段昊男 姬中华 刘伟新 苏殿强 李经宽 赵延霆

引用本文:
Citation:

基于射频场缀饰的直流电场Floquet-EIT光谱特性研究

段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆

Study on the Spectral Characteristics of Floquet-EIT dressed by Radio Frequency Field in a DC Electric Field

DUAN Haonan, JI Zhonghua, LIU Weixin, SU Dianqiang, LI Jingkuan, ZHAO Yanting
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 在室温铯原子气室中利用探测光(852 nm)与耦合光(510 nm)构建的里德堡阶梯型结构,实现了基于射频场缀饰的直流电场Floquet-EIT(electromagnetically induced transparency,电磁诱导透明)光谱,并研究了直流电场下的Floquet-EIT光谱特性.实验发现,仅射频电场作用时,EIT光谱只呈现偶数阶边带,而当射频场与直流电场同时作用时,实验观测到Floquet-EIT的一阶边带信号.随着直流电场强度增大,一阶边带幅值逐渐升高.然而,当直流电场增加到一定强度时,强电场会导致边带间相互串扰,使边带幅值下降,但增加射频频率可以延缓直流电场对一阶边带的串扰影响.最后对比Floquet-EIT光谱的边带幅值与DC-Stark光谱的频率偏移在微弱直流电场下的相对标准偏差,发现前者在微弱电场下的测量精确度明显优于后者.本文工作为直流电场和低频电场的量子传感测量提供了新思路.
    Rydberg atoms are a type of atoms characterized by high principal quantum numbers. Due to their large polarizability, electric field sensors based on Rydberg atoms have attracted considerable attention. However, research on direct current (DC) electric fields or lowfrequency electric fields utilizing Rydberg atoms is currently scarce, primarily due to the shielding effects associated with atomic vapor cells in regard to low-frequency electric fields, which make precise measurements of the electric field extremely challenging.
    In this paper, we construct a Rydberg ladder configuration using probe laser at 852 nm and coupling laser at 510 nm in a room temperature cesium vapor cell with integrated electrode plates. Thereby this enables the realization of a Floquet-EIT (electromagnetically induced transparency) spectrum dressed by a radio frequency (RF) field in the presence of a DC electric field, and we further study the influence from DC electric field on spectral characteristic. In experiments, it has been observed that when only the RF electric field is applied, the EIT spectrum displays solely even-order sidebands. Furthermore, when both the RF field and the DC electric field are simultaneously present, the first-order sideband signal of the Floquet-EIT are observed. As the intensity of the DC electric field increases, the amplitude of the firstorder sidebands gradually increases. However, increasing the DC electric field to a sufficient magnitude induces sidebands interference, which results in a reduction of the sideband amplitudes. Furthermore, increasing the RF frequency can alleviate the interference effects induced by the DC electric field on the first-order sidebands. Finally, comparing the relative standard deviation of the sideband amplitudes of the Floquet-EIT spectra with the frequency shifts of the DC-Stark spectra under weak DC electric fields, we find that the measurement accuracy of the former is significantly superior to the latter.
    This work make use of a Cs atomic vapor cell with an integrated electrode to avoid shielding effects. By observing Floquet-EIT spectra, the response of the spectra to DC electric fields is investigated. This experiment offers novel insights for quantum sensing measurements of DC and low-frequency electric fields.
  • [1]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001

    [2]

    Teale C, Sherman J, Kitching J 2022 AVS Quantum Sci. 4 024403

    [3]

    Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F 2022 Chin. Phys. B 31 090703

    [4]

    Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 006007

    [5]

    Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228

    [6]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A 2014 IEEE Trans. Antennas Propag. 62 6169

    [7]

    Kai Y L, Hai T T, Shu Z Y, Chang J C, Xiao H L, Jie L, Xin D Z, Hui Y, Shi L Z 2020 Phys. Rev. A 101,053432

    [8]

    Han Y L, Liu B, Zhang K, Sun J F, Sun H, Ding D S 2024 Acta Phys. Sin. 73 113201(in Chinese)[韩玉龙,刘邦,张侃,孙金芳,孙辉,丁冬生2024 73 113201]

    [9]

    Wang Y Z, Wu B, Fu Y Q, An Q 2025 Laser&Optoelectronics Progress 62 0302001(in Chinese)[王延正,武博,付云起,安强2025激光与光电子学进展 62 0302001]

    [10]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625

    [11]

    Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402(in Chinese)[吴逢 川,林沂,武博,付云起2022 71 207402]

    [12]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045

    [13]

    Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024 Chin. Phys. B 33 050702

    [14]

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202(in Chinese)[杨智伟,焦月春,韩小萱,赵建明,贾锁堂2017 66 093202]

    [15]

    Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser&Optoelectronics Progress 58 1702002(in Chinese)[李伟,张淳刚,张好,景明勇,张临杰2021激光 与光电子学进展58 1702002]

    [16]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034

    [17]

    Holloway C L, Prajapati N, Sherman J A, Rufenacht A, Artusio-Glimpse A B, Simons M T, Robinson A K, David S L M, Norrgard E B AVS Quantum Sci. 4 034404

    [18]

    Ouyang K, Shi Y S, Lei M W, Shi M 2023 Appl. Phys. Lett. 123 264001

    [19]

    Luo X B, Li L P, You L, Wu B 2014 New J. Phys. 16 013007

    [20]

    Rotunno A P, Berweger S, Prajapati N, Simons M T, Artusio-Glimpse A B, Holloway C L, Jayaseelan M, Potvliege R M, Adams C S 2023 J. Appl. Phys. 134 134501

    [21]

    Veit C, Epple G, Kübler H, Euser T G, Russell P S J, Löw R 2016 J. Phys. B 49 134005

    [22]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [23]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [24]

    Song D N, Jiao Y C, Hu J L, Yin Y W, Li Z H, He Y H, Bai J X, Zhao J M, Jia S T 2024 Appl. Phys. Lett. 129 194001

    [25]

    Liu W X, Zhang L J, Wang T 2023 Chin. Phys. B 32 053203

    [26]

    Šibalić N, Pritchard J D, Weatherill K J, Adams C S 2017 Comput. Phys. Commun. 220 319

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析.  , doi: 10.7498/aps.74.20241362
    [2] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究.  , doi: 10.7498/aps.72.20222091
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , doi: 10.7498/aps.72.20222059
    [4] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , doi: 10.7498/aps.71.20211284
    [5] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , doi: 10.7498/aps.70.20210102
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , doi: 10.7498/aps.69.20200369
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , doi: 10.7498/aps.67.20181168
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , doi: 10.7498/aps.66.100202
    [10] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , doi: 10.7498/aps.66.103201
    [11] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构.  , doi: 10.7498/aps.64.093201
    [12] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , doi: 10.7498/aps.64.064202
    [13] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量.  , doi: 10.7498/aps.64.160702
    [14] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , doi: 10.7498/aps.62.174207
    [15] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , doi: 10.7498/aps.62.064202
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收.  , doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  95
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map