-
在室温铯原子气室中利用探测光(852 nm)与耦合光(510 nm)构建的里德堡阶梯型结构,实现了基于射频场缀饰的直流电场Floquet-EIT(electromagnetically induced transparency,电磁诱导透明)光谱,并研究了直流电场下的Floquet-EIT光谱特性.实验发现,仅射频电场作用时,EIT光谱只呈现偶数阶边带,而当射频场与直流电场同时作用时,实验观测到Floquet-EIT的一阶边带信号.随着直流电场强度增大,一阶边带幅值逐渐升高.然而,当直流电场增加到一定强度时,强电场会导致边带间相互串扰,使边带幅值下降,但增加射频频率可以延缓直流电场对一阶边带的串扰影响.最后对比Floquet-EIT光谱的边带幅值与DC-Stark光谱的频率偏移在微弱直流电场下的相对标准偏差,发现前者在微弱电场下的测量精确度明显优于后者.本文工作为直流电场和低频电场的量子传感测量提供了新思路.
-
关键词:
- 里德堡原子 /
- 电磁诱导透明 /
- Floquet-EIT边带 /
- 射频调制
Rydberg atoms are a type of atoms characterized by high principal quantum numbers. Due to their large polarizability, electric field sensors based on Rydberg atoms have attracted considerable attention. However, research on direct current (DC) electric fields or lowfrequency electric fields utilizing Rydberg atoms is currently scarce, primarily due to the shielding effects associated with atomic vapor cells in regard to low-frequency electric fields, which make precise measurements of the electric field extremely challenging.
In this paper, we construct a Rydberg ladder configuration using probe laser at 852 nm and coupling laser at 510 nm in a room temperature cesium vapor cell with integrated electrode plates. Thereby this enables the realization of a Floquet-EIT (electromagnetically induced transparency) spectrum dressed by a radio frequency (RF) field in the presence of a DC electric field, and we further study the influence from DC electric field on spectral characteristic. In experiments, it has been observed that when only the RF electric field is applied, the EIT spectrum displays solely even-order sidebands. Furthermore, when both the RF field and the DC electric field are simultaneously present, the first-order sideband signal of the Floquet-EIT are observed. As the intensity of the DC electric field increases, the amplitude of the firstorder sidebands gradually increases. However, increasing the DC electric field to a sufficient magnitude induces sidebands interference, which results in a reduction of the sideband amplitudes. Furthermore, increasing the RF frequency can alleviate the interference effects induced by the DC electric field on the first-order sidebands. Finally, comparing the relative standard deviation of the sideband amplitudes of the Floquet-EIT spectra with the frequency shifts of the DC-Stark spectra under weak DC electric fields, we find that the measurement accuracy of the former is significantly superior to the latter.
This work make use of a Cs atomic vapor cell with an integrated electrode to avoid shielding effects. By observing Floquet-EIT spectra, the response of the spectra to DC electric fields is investigated. This experiment offers novel insights for quantum sensing measurements of DC and low-frequency electric fields.-
Keywords:
- Rydberg atoms /
- Electromagnetically induced transparency /
- Floquet-EIT sideband /
- Radio-frequency modulation
-
[1] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001
[2] Teale C, Sherman J, Kitching J 2022 AVS Quantum Sci. 4 024403
[3] Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F 2022 Chin. Phys. B 31 090703
[4] Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 006007
[5] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228
[6] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A 2014 IEEE Trans. Antennas Propag. 62 6169
[7] Kai Y L, Hai T T, Shu Z Y, Chang J C, Xiao H L, Jie L, Xin D Z, Hui Y, Shi L Z 2020 Phys. Rev. A 101,053432
[8] Han Y L, Liu B, Zhang K, Sun J F, Sun H, Ding D S 2024 Acta Phys. Sin. 73 113201(in Chinese)[韩玉龙,刘邦,张侃,孙金芳,孙辉,丁冬生2024 73 113201]
[9] Wang Y Z, Wu B, Fu Y Q, An Q 2025 Laser&Optoelectronics Progress 62 0302001(in Chinese)[王延正,武博,付云起,安强2025激光与光电子学进展 62 0302001]
[10] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625
[11] Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402(in Chinese)[吴逢 川,林沂,武博,付云起2022 71 207402]
[12] Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045
[13] Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024 Chin. Phys. B 33 050702
[14] Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202(in Chinese)[杨智伟,焦月春,韩小萱,赵建明,贾锁堂2017 66 093202]
[15] Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser&Optoelectronics Progress 58 1702002(in Chinese)[李伟,张淳刚,张好,景明勇,张临杰2021激光 与光电子学进展58 1702002]
[16] Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034
[17] Holloway C L, Prajapati N, Sherman J A, Rufenacht A, Artusio-Glimpse A B, Simons M T, Robinson A K, David S L M, Norrgard E B AVS Quantum Sci. 4 034404
[18] Ouyang K, Shi Y S, Lei M W, Shi M 2023 Appl. Phys. Lett. 123 264001
[19] Luo X B, Li L P, You L, Wu B 2014 New J. Phys. 16 013007
[20] Rotunno A P, Berweger S, Prajapati N, Simons M T, Artusio-Glimpse A B, Holloway C L, Jayaseelan M, Potvliege R M, Adams C S 2023 J. Appl. Phys. 134 134501
[21] Veit C, Epple G, Kübler H, Euser T G, Russell P S J, Löw R 2016 J. Phys. B 49 134005
[22] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015
[23] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
[24] Song D N, Jiao Y C, Hu J L, Yin Y W, Li Z H, He Y H, Bai J X, Zhao J M, Jia S T 2024 Appl. Phys. Lett. 129 194001
[25] Liu W X, Zhang L J, Wang T 2023 Chin. Phys. B 32 053203
[26] Šibalić N, Pritchard J D, Weatherill K J, Adams C S 2017 Comput. Phys. Commun. 220 319
计量
- 文章访问数: 95
- PDF下载量: 9
- 被引次数: 0