-
Rydberg atom is an atom with a high principal quantum number. Its quantum coherence effect enables the measuring of radio frequency electric fields in space. In this work, the radio frequency pulse response characteristics of the radio frequency receiving system based on the Rydberg atom under different pulse widths and intensities are studied. In the experiment, lasers with wavelengths of 852 nm and 510 nm are used to excite cesium atoms. Moreover, a radio frequency source emits pulse signals with different parameters to irradiate Rydberg atoms. The probe signal transmitted from the atomic vapor cell is directed at the photodetector. Moreover, the oscilloscope records the electrical signal obtained by photoelectric conversion. In addition, the simulation ranging is performed by setting different pulse delay times through the fiber delay instrument. It preliminarily proves that the radio frequency receiving system based on Rydberg atoms has a function of pulse ranging.
-
Keywords:
- Rydberg atoms /
- quantum coherence effect /
- pulse /
- ranging
[1] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502
Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
Google Scholar
[3] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electromagn. Compat. 59 717
Google Scholar
[4] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931
Google Scholar
[5] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
Google Scholar
[6] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
Google Scholar
[7] Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
Google Scholar
[8] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625
Google Scholar
[9] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427
Google Scholar
[10] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Google Scholar
Liao K Y, Xu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Sin-Phys. Mech. Astron. 51 14
Google Scholar
[11] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
Google Scholar
[12] Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
Google Scholar
[13] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813
Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[15] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[16] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[17] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag. 63 63
Google Scholar
[18] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[19] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[20] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 MDPI Appl. Sci. 10 1346
Google Scholar
[21] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[22] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[23] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975
Google Scholar
[24] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047
Google Scholar
[25] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[26] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B: At., Mol. Opt. Phys. 53 094003
Google Scholar
[27] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
Google Scholar
-
表 1 设定脉冲宽度和测量脉冲宽度的对比
Table 1. Comparison of set and measured pulse width.
Setting value/μs Measured value/μs Error value/μs Relative error value/% 50 50.5 0.5 1.0 20 21.3 1.3 6.5 10 11.0 1.0 10.0 5 6.2 1.2 24.0 2 2.6 0.6 30.0 1 3.9 2.9 290.0 表 2 设定距离和测量距离的对比
Table 2. Comparison of set and measured distance values.
Setting value/m Measured value/m Error/m 0 35 35 5000 4970 –30 10000 9965 –35 15000 15030 30 -
[1] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502
Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
Google Scholar
[3] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electromagn. Compat. 59 717
Google Scholar
[4] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931
Google Scholar
[5] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
Google Scholar
[6] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
Google Scholar
[7] Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
Google Scholar
[8] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625
Google Scholar
[9] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427
Google Scholar
[10] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Google Scholar
Liao K Y, Xu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Sin-Phys. Mech. Astron. 51 14
Google Scholar
[11] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
Google Scholar
[12] Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
Google Scholar
[13] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813
Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[15] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[16] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[17] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag. 63 63
Google Scholar
[18] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[19] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[20] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 MDPI Appl. Sci. 10 1346
Google Scholar
[21] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[22] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[23] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975
Google Scholar
[24] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047
Google Scholar
[25] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[26] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B: At., Mol. Opt. Phys. 53 094003
Google Scholar
[27] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
Google Scholar
计量
- 文章访问数: 4893
- PDF下载量: 143
- 被引次数: 0