搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德伯电磁感应透明中的相位

严冬 王彬彬 白文杰 刘兵 杜秀国 任春年

引用本文:
Citation:

里德伯电磁感应透明中的相位

严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年

Phase in Rydberg electromagnetically induced transparency

Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian
PDF
HTML
导出引用
  • 本文在典型的里德伯电磁感应透明系统中研究弱探测场在相互作用原子系统中的传播特性, 重点关注基于偶极阻塞效应的探测场相位的合作光学非线性行为. 通过与探测场透射率和光子关联作对比, 发现相位的光学响应具有新特性: 共振和Autler-Townes劈裂条件下相位对入射场强和初始光子关联不敏感, 而在两者之间的频率范围内相位响应具有非线性特征, 尤其在经典光频率处最显著. 此外, 提高主量子数和原子密度都会促进相位的非线性效应. 综上, 与探测场透射率和光子关联一样, 相位可以作为合作光学非线性的另一个标识来刻画非线性现象, 对里德伯电磁感应透明研究是一个有力的补充.
    Transmission properties of a weak probe field traveling through a sample of interacting cold 87Rb atoms driven into the three-level ladder configuration, which is a typical Rydberg electromagnetically induced transparency (EIT) system, are investigated. Rydberg atoms are considered to be a perfect platform in the research fields of quantum optics and quantum information processing due to some exaggerated properties of Rydberg atoms with high principal quantum number, especially, the dipole-dipole interaction between Rydberg atoms leads to the so-called dipole blockade effect accommodating at most one Rydberg excitation within a mesoscopic volume. The dipole blockade effect may be mapped onto the spectrum of EIT, and the EIT exhibits the cooperative optical nonlinearity which is usually characterized by two indicators, i.e., the probe intensity and the photonic correlation. The cooperative optical nonlinearity is also found here in the phase of transmission spectrum, and the phase can be regarded as the third indicator of nonlinearity in Rydberg EIT. However, there are tremendous differences between the phase and probe transmission (photonic correlation) though they both originate from the conditional polarization. Specifically, the phase is not sensitive to neither the incident probe intensity nor the initial photonic correlation at the resonant probe frequency under the condition of the Autler-Townes (AT) splitting where two other indicators exhibit significant cooperative nonlinearity. The nonlinearity in phase spectrum occurs only in the regime between the resonant probe frequency and the AT splitting and especially is remarkable at the frequency where the probe field is classical. Finally, influence of the principal quantum number and the atomic density on the transmitted phase are examined. In the nonlinear regime, the absolute value of the phase becomes smaller and smaller as the principal quantum number and the atomic density are raised. This indicates that the nonlinearity is strengthened by increasing them. The probe phase provides an attractive supplement to study in depth the cooperative optical nonlinearity in Rydberg EIT and offers us the considerable flexibility to manipulate the propagation and evolution of a quantum light field.
      通信作者: 严冬, ydbest@126.com
    • 基金项目: 国家自然科学基金(批准号: 11204019, 11874004)和教育部“春晖计划”(批准号: Z2017030)资助的课题.
      Corresponding author: Yan Dong, ydbest@126.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11204019, 11874004) and the “Spring Sunshine” Plan Foundation of Ministry of Education of China (Grant No. Z2017030).
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Harris S E 1997 Physics Today 50 36

    [3]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [4]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [5]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [6]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Fleichhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [9]

    Simon C, Afzelius M, Appel J, de la Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kröll S, Müller J H, Nunn J, Polzik E S, Rarity J G, de Riedmatten H, Rosenfeld W, Shields A J, Sköld N, Stevenson R M, Thew R, Walmsley I A, Weber M C, Weinfurter H, Wrachtrup J, Young R J 2010 Eur. Phys. J. D. 58 1Google Scholar

    [10]

    Eisaman M D, Andre A, Massou M, Fleichhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [11]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [12]

    De Araujo L E E 2010 Opt. Lett. 35 977Google Scholar

    [13]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [14]

    He Q Y, Xue Y, Artoni M, La Rocca G C, Xu J H, Gao J Y 2006 Phys. Rev. B 73 195124Google Scholar

    [15]

    Schmidt H, Ram R J 2000 App. Phys. Lett. 76 3173Google Scholar

    [16]

    Wu J H, La Rocca G C, Artoni M 2008 Phys. Rev. B 77 113106Google Scholar

    [17]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [18]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002Google Scholar

    [19]

    Walker T G 2012 Nature 488 39Google Scholar

    [20]

    Müller M M, Kölle A, Löw R, Pfau T, Calarco T, Montangero S 2013 Phys. Rev. A 87 053412Google Scholar

    [21]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletic V 2012 Nature 488 57Google Scholar

    [22]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [23]

    Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletić V 2013 Science 341 768Google Scholar

    [24]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [25]

    Paredes-Barato D, Adams C S 2014 Phys. Rev. Lett. 112 040501Google Scholar

    [26]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [27]

    Sevinçli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [28]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [29]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [30]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [31]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [32]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [33]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 408 41

    [34]

    Singer K, Stanojevic J, Weidemuller M, Cote R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S295Google Scholar

  • 图 1  (a)量子探测场$\scriptstyle{\hat \varOmega _{\rm{p}}}$在控制场${\varOmega _{\rm{c}}}$相干作用下的一维冷原子系综中传播, 原子系综可以看作是由独立的超级原子构成的; (b)左侧为具有vdW 相互作用的三能级原子结构图; 右侧为等价的无相互作用超级原子能级结构图

    Fig. 1.  (a) Under the control of a classical field $ {\varOmega _{\rm{c}}}$, a quantum probe field $\scriptstyle{\hat \varOmega _{\rm{p}}}$ propagates in a one-dimensional cold atomic ensemble of non-interacting superatoms. (b) Left, level structure of the three-level interacting cold atoms described by a vdW potential; right, an equivalent energy level structure of a non-interacting superatom.

    图 2  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$的函数. 黑色实线, 蓝色折线以及红色点线分别对应入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$, 0.3 MHz和0.6 MHz的情况. 单光子失谐${\varDelta _{\rm{c}}} = 0$, 控制场拉比频率${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$, 其他参数见正文描述

    Fig. 2.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) probe phase ${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$. The black solid, blue dashed and red dotted curves are corresponding to incident probe Rabi frequencies ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$, $0.3\;{\rm{MHz}}$ and $0.6\;{\rm{MHz}}$, respectively. The single-photon detuning ${\varDelta _{\rm{c}}} = 0$ and the Rabi frequency of control field ${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$. Other parameters are described in the text.

    图 3  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$和入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$的函数. 其他参数同图2

    Fig. 3.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) the probe phase ${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$ and theRabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$. Other parameters are the same as in Fig. 2.

    图 4  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$和初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right)$的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$, 其他参数同图2

    Fig. 4.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{{\rm{(2)}}}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) probe phase $ {\phi _{\rm{p}}}(L)/{\text{π}} $ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$ and the initial second-order correlation function $g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$. The Rabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and other parameters are the same as in Fig. 2.

    图 5  探测场相位${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$作为入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$和初始二阶关联函数$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$的函数 (a)探测失谐${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$; (b)探测失谐${\varDelta _{\rm{p}}} = $$ - 1.4\;{\rm{MHz}}$. 其他参数同图2

    Fig. 5.  Probe phase ${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of the Rabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ and initial second-order correlation function $g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$: (a) Probe detuning ${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$; (b) probe detuning ${\varDelta _{\rm{p}}} = $$- 1.4\;{\rm{MHz}}$. Other parameters are the same as in Fig. 2.

    图 6  探测场相位${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$作为(a)主量子数$n$和(b)原子密度$\rho $的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/$$(2{\text{π}}) = 0.3\;{\rm{MHz}}$, 初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$. 其他参数同图2

    Fig. 6.  Probe phase ${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of (a)the principal quantum number $n$ and (b) the atomic density $\rho $. The incident probe intensity ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and the initial second-order correlation function $g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$. Other parameters are the same as in Fig. 2.

    Baidu
  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Harris S E 1997 Physics Today 50 36

    [3]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [4]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [5]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [6]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Fleichhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [9]

    Simon C, Afzelius M, Appel J, de la Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kröll S, Müller J H, Nunn J, Polzik E S, Rarity J G, de Riedmatten H, Rosenfeld W, Shields A J, Sköld N, Stevenson R M, Thew R, Walmsley I A, Weber M C, Weinfurter H, Wrachtrup J, Young R J 2010 Eur. Phys. J. D. 58 1Google Scholar

    [10]

    Eisaman M D, Andre A, Massou M, Fleichhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [11]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [12]

    De Araujo L E E 2010 Opt. Lett. 35 977Google Scholar

    [13]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [14]

    He Q Y, Xue Y, Artoni M, La Rocca G C, Xu J H, Gao J Y 2006 Phys. Rev. B 73 195124Google Scholar

    [15]

    Schmidt H, Ram R J 2000 App. Phys. Lett. 76 3173Google Scholar

    [16]

    Wu J H, La Rocca G C, Artoni M 2008 Phys. Rev. B 77 113106Google Scholar

    [17]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [18]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002Google Scholar

    [19]

    Walker T G 2012 Nature 488 39Google Scholar

    [20]

    Müller M M, Kölle A, Löw R, Pfau T, Calarco T, Montangero S 2013 Phys. Rev. A 87 053412Google Scholar

    [21]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletic V 2012 Nature 488 57Google Scholar

    [22]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [23]

    Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletić V 2013 Science 341 768Google Scholar

    [24]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [25]

    Paredes-Barato D, Adams C S 2014 Phys. Rev. Lett. 112 040501Google Scholar

    [26]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [27]

    Sevinçli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [28]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [29]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [30]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [31]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [32]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [33]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 408 41

    [34]

    Singer K, Stanojevic J, Weidemuller M, Cote R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S295Google Scholar

  • [1] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学.  , 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [3] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱.  , 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [4] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [6] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [7] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性.  , 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [8] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [9] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控.  , 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [10] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [11] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [12] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现.  , 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控.  , 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [14] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [15] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [16] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [17] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析.  , 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [18] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [19] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅.  , 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [20] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
计量
  • 文章访问数:  8982
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-31
  • 修回日期:  2019-01-14
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map