Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface

Jiang Ping-Guo Wang Zheng-Bing Yan Yong-Bo

Citation:

First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface

Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of modern industrial technology, tungsten products prepared from normal tungsten powder cannot meet the demands of industry. The tungsten product produced from ultra-fine tungsten powder exhibits high strength, high toughness, and low metal plasticity-brittleness transition temperature, which greatly improves the performance of materials. Hence, it is necessary to carry out theoretical research on the micro adsorption dynamics during hydrogen reduction of tungsten trioxide to prepare ultra fine tungsten powder. In order to understand crystal characteristics of WO3 and WO3(001) surface characteristics, and to provide beneficial theoretical support for reaction law of hydrogen reduction on the WO3(001) surface, the mechanisms of H atom adsorption on cubic WO3 and WO3(001) surface are studied by the first-principles calculation based on the density functional theory (DFT) plane wave pseudo-potential method. The results show that theoretically calculated band gap of the cubic crystalline WO3 is 0.587 eV. There are two kinds of WO3(001) surfaces, WO-terminated (001) surface and O-terminated (001) surface. The W-O bond length and the bond angle of W-O-W structure change after the geometric optimization of the surface, and thus the surface relaxation is realized. The WO-terminated (001) surface shows n-type semiconductor characteristics while the O-terminated (001) surface shows p-type semiconductor characteristics. Four adsorption configurations of H atoms on the WO-terminated (001) surface and the O-terminated (001) surface, including H-O2c-H, H-O2 cH-O2c, H-O1c-H, and H-O1cH-O1c, are calculated. Among them, the adsorption energy of the H-O1c-H configuration is the smallest (-3.684 eV) with the shortest bond length of H-O bond (0.0968 nm), and hydrogen atoms lose the most of electrons (0.55e), which indicates that the H-O1c-H adsorption configuration is the most stable one. The band gap of the H-O1c-H configuration increases from 0.624 eV to 1.004 eV after adsorption, while the bandwidth of valence band is almost unchanged. The results about the density of states (DOS) reveal that 1s state of the H atom interacts with 2p and 2s states of the O atom. Strong isolated electron peaks are formed to be at about -8 and -20 eV. The outermost O1c atoms of O-terminated (001) surface contain an unsaturated bond, facilitating the bonding between two H atoms and one O1c atom. Thus, two H atoms and one O1c atom form chemical bonds respectively, and an H2O molecule is generated, leaving an oxygen vacancy on the surface after adsorption reaction. By combining experimental observations with simulation results, the mechanism of hydrogen reducing tungsten trioxide can be elaborated profoundly from a micro view.
      Corresponding author: Jiang Ping-Guo, pingguo_jiang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51564016) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206029).
    [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1] Fang Yu-Xuan, Yang Yi, Xia Zhi-Liang, Huo Zong-Liang. First-principles study of F adsorption by TiN with its oxide surface in three-dimensional NAND flash memory. Acta Physica Sinica, 2024, 73(12): 128502. doi: 10.7498/aps.73.20240254
    [2] Zhou Bin, Xiao Shi-Cheng, Wang Yi-Nan, Zhang Xiao-Yu, Zhong Xue, Ma Dan, Dai Ying, Fan Zhi-Qiang, Tang Gui-Ping. First-principles study of VS2 as anode material for Li-ion batteries. Acta Physica Sinica, 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [3] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao. First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Physica Sinica, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [5] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [7] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [8] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [9] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [10] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [11] Hou Qing-Yu, Zhao Chun-Wang. A first-principle study of the effect of W-doping on physical properties of anatase TiO2. Acta Physica Sinica, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [12] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [14] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [15] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] Du Yu-Jie, Chang Ben-Kang, Wang Xiao-Hui, Zhang Jun-Ju, Li Biao, Fu Xiao-Qian. Electronic structure and optical properties of Cs/GaN(0001) adsorption system. Acta Physica Sinica, 2012, 61(5): 057102. doi: 10.7498/aps.61.057102
    [17] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [18] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] Wu Xiao-Xia, Wang Qian-En, Wang Fu-He, Zhou Yun-Song. First-principles study on chemisorption of Cl on γ-TiAl(111) surface. Acta Physica Sinica, 2010, 59(10): 7278-7284. doi: 10.7498/aps.59.7278
    [20] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
Metrics
  • Abstract views:  7982
  • PDF Downloads:  525
  • Cited By: 0
Publishing process
  • Received Date:  14 November 2016
  • Accepted Date:  14 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map