搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各Li吸附组分下硅烯氢存储性能的第一性原理研究

盛喆 戴显英 苗东铭 吴淑静 赵天龙 郝跃

引用本文:
Citation:

各Li吸附组分下硅烯氢存储性能的第一性原理研究

盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃

First-principles study of hydrogen storage properties of silicene under different Li adsorption components

Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue
PDF
导出引用
  • 利用Li原子对硅烯进行表面修饰是提高硅烯氢存储能力的一种有效方法.为了充分挖掘Li修饰硅烯的氢存储性能,本文采用范德瓦耳斯作用修正的第一性原理计算方法,对不同Li吸附组分下硅烯的结构、稳定性和氢存储能力进行了研究.研究结果表明,硅烯体系能够在Li组分从0.11增加到0.50时保持稳定,其最大储氢量随Li组分的增加而增大,氢气平均吸附能则存在减小趋势;当Li组分达到0.50而饱和时,硅烯体系具有最大的储氢量,相应的质量储氢密度为11.46 wt%,平均吸附能为0.34 eV/H2,远高于美国能源部设定的储氢标准,表明提高Li组分甚至使其达到饱和在理论上能有效提高Li修饰硅烯的储氢性能.此外,通过对Mulliken电荷布居、差分电荷密度和态密度的分析,发现Li修饰硅烯的储氢机制与电荷转移诱导的静电相互作用和轨道杂化作用有关.研究结果可为Li修饰硅烯在未来氢存储领域的应用提供理论指导.
    Alkali metal has predicted to be a promising candidate for decorating silicene surface to obtain the high hydrogen storage capacity, owing to their physical properties of lightweight, lower cohesive energy, and appropriate strength of the interaction with H2 molecules. However, though the high potential in hydrogen storage of alkali metal adatoms-decorated silicene under the fixed adatom adsorption component is well known, the evidence for the hydrogen storage capacity of alkali metal adatoms-decorated silicene under different adatom adsorption components remains largely unexplored, which may be of great significance to make the most advantages of alkali metal adatoms-decorated silicene in hydrogen storage aspects. Herein, according to the first-principles calculation corrected by the van der Waals effect, we take Li-decorated silicene for example and perform the detailed study of the geometry structure, the stability and the hydrogen storage capacity of silicene under different Li adsorption components (LixSi1-x), aiming to maximize the hydrogen storage performance of Li-decorated silicene. The results show that the preferred site of Li changes from the hollow site to the valley site as the Li component increases from 0.11 to 0.50, and binding energy of Li is always greater than the corresponding cohesive energy, showing the high stability of Li-decorated silicene and the feasibility of the method to obtain a higher hydrogen storage capacity by increasing the Li component. The hydrogen storage of silicene under different Li adsorption components is investigated by the sequential addition of H2 molecules nearby Li atoms in a stepwise manner. It can be observed that the hydrogen storage capacity of Li-decorated silicene increases and the average adsorption energy decreases with the increase of the Li component. The corresponding hydrogen storage capacities of Li0.11Si0.89, Li0.20Si0.80, Li0.33Si0.67, Li0.43Si0.57 can reach up to 2.54 wt%, 4.82 wt%, 6.00 wt% and 9.58 wt% with 0.58 eV/H2, 0.47 eV/H2, 0.54 eV/H2 and 0.41 eV/H2 average adsorption energy, respectively. When the Li component increases up to 0.50, Li atoms are saturated with a maximum hydrogen storage capacity of 11.46 wt% and an average adsorption energy of 0.34 eV/H2, which well meet the hydrogen storage standard set by the U.S. Department of Energy and mean that the hydrogen storage can be theoretically improved by increasing the Li adsorption component to a saturated level. Furthermore, we analyze the Mulliken charge population, the charge density difference and the density of states, showing that the charge-induced electrostatic interaction and the orbital hybridization are the key factors for the hydrogen adsorption of Li-decorated silicene. Our results may enhance our fundamental understanding of the hydrogen storage mechanism and explore the applications in areas of hydrogen storage for Li-decorated silicene, which are of great importance for the usage of hydrogen in the future.
      通信作者: 戴显英, xydai@xidian.edu.cn
    • 基金项目: 国家部委重点基金(批准号:9140A08020115DZ01024)、中央高校基本科研业务费专项资金(批准号:XJS17061,JBX171102)、中国博士后科学基金(批准号:2017M613061)和高等学校学科创新引智计划(批准号:B12026)资助的课题.
      Corresponding author: Dai Xian-Ying, xydai@xidian.edu.cn
    • Funds: Project supported by the Advance Research Foundation of China (Grant No. 9140A08020115DZ01024), the Fundamental Research Funds for the Central Universities of China (Grant Nos. XJS17061, JBX171102), the China Postdoctoral Science Foundation (Grant No. 2017M613061), and the 111 Project, China (Grant No. B12026).
    [1]

    Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111

    [2]

    Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408

    [3]

    Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 66 216805]

    [4]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256

    [5]

    Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483

    [6]

    Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072

    [7]

    Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24

    [8]

    Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903

    [9]

    Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027

    [10]

    Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309

    [11]

    Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41

    [12]

    Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357

    [13]

    Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985

    [14]

    Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972

    [15]

    Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703

    [16]

    Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176

    [17]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900

    [18]

    Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933

    [19]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40

    [20]

    Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102

    [21]

    Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631

    [22]

    Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Chadi D J 1977 Phys. Rev. B 16 1746

    [28]

    Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 64 013101]

    [29]

    Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1]

    Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111

    [2]

    Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408

    [3]

    Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 66 216805]

    [4]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256

    [5]

    Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483

    [6]

    Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072

    [7]

    Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24

    [8]

    Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903

    [9]

    Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027

    [10]

    Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309

    [11]

    Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41

    [12]

    Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357

    [13]

    Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985

    [14]

    Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972

    [15]

    Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703

    [16]

    Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176

    [17]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900

    [18]

    Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933

    [19]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40

    [20]

    Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102

    [21]

    Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631

    [22]

    Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Chadi D J 1977 Phys. Rev. B 16 1746

    [28]

    Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 64 013101]

    [29]

    Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究.  , 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究.  , 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究.  , 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [5] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究.  , 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [10] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [11] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [12] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [13] 赵玉娜, 高涛, 吕金钟, 马俊刚. Li-N-H储氢体系热力学性质的第一性原理研究.  , 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [14] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究.  , 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [15] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究.  , 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [17] 张辉, 张国英, 肖明珠, 路广霞, 朱圣龙, 张轲. 金属元素替代对Li4BN3H10储氢材料释氢影响机理的第一性原理研究.  , 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [18] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究.  , 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [19] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [20] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计.  , 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
计量
  • 文章访问数:  6317
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-03-14
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map