Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure

Wei Yang Ma Xin-Guo Zhu Lin He Hua Huang Chu-Yun

Citation:

Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure

Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To improve the efficiency of water-splitting, a key way is to select suitable semiconductor or design semiconductor based heterostructure to enhance charge separation of photogenerated h+-e- pairs. It is possible for a two-dimensional (2D) heterostructure to show more efficient charge separation and transfer in a short transport time and distance. Among numerous heteromaterials, the 2D layered MoS2 has become a very valuable material in photocatalysis-driven field due to the appropriate electronic structure, peculiar thermal and chemical stability, and low-cost preparation. To couple with MoS2, layered graphene will be an ideal candidate due to extremely high carrier mobility, large surface area, and good lattice match with MoS2. At present, a lot of researches focus on the synthesis and modification of MoS2/graphene heterostructure. However, it is hard to detect directly the weak interaction between MoS2 and graphene through the experiment. Here, an effective structural coupling approach is described to modify the photoelectrochemical properties of MoS2 sheet by using the stacking interaction with graphene, and the corresponding effects of interface cohesive interaction on the charge redistribution and the band edge of MoS2/graphene heterostructure are investigated by using the planewave ultrasoft pseudopotentials in detail. Three dispersion corrections take into account the weak interactions between MoS2 and graphene, resulting in an equilibrium layer distance d of about 0.34 nm for the MoS2/graphene heterostructure. The results indicate that the lattice mismatch between monolayer MoS2 and graphene is low in contact and a van der Waals interaction forms in interface. Further, it is identified by analyzing the energy band structures and the threedimensional charge density difference that in the MoS2 layer in interface there appears an obvious electron accumulation, which presents a new n-type semiconductor for MoS2 and a p-type graphene with a small band gap ( 0.1 eV). In addition, Mo 4d electrons in the upper valence band can be excited to the conduction band under irradiation. And the orbital hybridization between Mo 4d and S 3p will cause photogenerated electrons to transfer easily from the internal Mo atoms to the external S atoms. The build-in internal electric field from graphene to MoS2 will facilitate the transfer and separation of photogenerated charge carriers after equilibrium of the MoS2/graphene interface. It is identified that the hybridization between the two components induces a decrease of band gap and then an increase of optical absorption of MoS2 in visible-light region. It is noted that their energy levels are adjusted with the shift of their Fermi levels based on our calculated work function. The results show that the Fermi level of monolayer MoS2 is located under the conduction band and more positive than that of graphene. After the equilibrium of the MoS2/graphene interface, the Fermi level shifts toward the negative direction for MoS2 and the positive direction for graphene, respectively, until they are equal. At this time, the conduction band and valence band of MoS2 are pulled to the negative direction a little, and then form a slightly upward band bending close to the interface between MoS2 and graphene. Combining the decrease of the band gap of MoS2 in heterostructure, the potential of the conduction band minimum of MoS2 in heterostructure will increase to -0.31 eV, which enhances its reduction capacity. A detailed understanding of the microcosmic mechanisms of interface interaction and charge transfer in this system can be helpful in fabricating 2D heterostructure photocatalysts.
      Corresponding author: Ma Xin-Guo, maxg2013@sohu.com;chuyunh@163.com ; Huang Chu-Yun, maxg2013@sohu.com;chuyunh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51472081), the Foundation of Hubei University of Technology for High-Level Talents, China (Grant No. GCRC13014), the Leading Plan of Green Industry, China (Grant No. YXQN2016005), and the Development Founds of Hubei Collaborative Innovation Center, China (Grant No. HBSKFZD2015004).
    [1]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [2]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664

    [3]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [4]

    Patil S, Harle A, Sathaye S, Patil K 2014 Cryst. Eng. Comm. 16 10845

    [5]

    Nrskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23

    [6]

    Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J 2012 Science 335 698

    [7]

    Garrett B R, Polen S M, Click K A, He M F, Huang Z J, Hadad C M, Wu Y Y 2016 Inorg. Chem. 55 3960

    [8]

    Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A 2015 Catal. Sci. Technol. 5 4133

    [9]

    Weng B, Zhang X, Zhang N, Tang Z R, Xu Y J 2015 Langmuir 31 4314

    [10]

    Chen Y J, Tian G H, Shi Y H, Xiao Y T, Fu H G 2015 Appl. Catal. B: Environ. 164 40

    [11]

    Meng F, Li J, Cushing S K, Zhi M, Wu N 2013 J. Am. Chem. Soc. 135 10286

    [12]

    Zhao M, Chang M J, Wang Q, Zhu Z T, Zhai X P, Zirak M, Moshfegh A Z, Song Y L, Zhang H L 2015 Chem. Commun. 51 12262

    [13]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [14]

    Fu Y S, Wang X 2011 Ind. Eng. Chem. Res. 50 7210

    [15]

    Yun H N, Iwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607

    [16]

    Xu T G, Zhang L W, Cheng H Y, Zhu Y F 2011 Appl. Catal. B: Environ. 101 382

    [17]

    Li H L, Yu K, Li C, Tang Z, Guo B J, Lei X, Fu H, Zhu Z Q 2015 Sci. Rep. 5 18730

    [18]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [19]

    Kumar N A, Dar M A, Gul R, Baek J B 2015 Mater. Today 18 286

    [20]

    Min S X, Lu G X 2012 J. Phys. Chem. C 116 25415

    [21]

    Carraro F, Calvillo L, Cattelan M, Favaro M, Righetto M, Nappini S, P I, Celorrio V, Fermn D J, Martucci A, Agnoli S, Granozzi G 2015 ACS Appl. Mater. Interfaces 7 25685

    [22]

    Deng Z H, Li L, Ding W, Xiong K, Wei Z D 2015 Chem. Commun. 51 1893

    [23]

    Jaramillo T F, Jrgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I B 2007 Science 317 100

    [24]

    Jin C J, Rasmussen F A, Thygesen K S 2016 J. Phys. Chem. C 120 1352

    [25]

    Aziza Z B, Henck H, Felice D D, Pierucci D, Chaste J, Naylor C H, Balan A, Dappe Y J, Johnson A T C, Ouerghi A 2016 Carbon 110 396

    [26]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [28]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [30]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys: Condens. Matter 14 2717

    [33]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [34]

    Jiang J W 2015 Front. Phys. 10 287

    [35]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T, Asensio M C, Ouerqhi A 2016 Nano Lett. 16 4054

    [36]

    Zhu J D, Zhang J C, Hao Y 2016 Jpn. J. Appl. Phys. 55 080306

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417

    [39]

    Low J X, Cao S W, Yu J G, Wageh S 2014 Chem. Commun. 50 10768

    [40]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [41]

    Huang Z Y, He C Y, Qi X, Yang H, Liu W L, Wei X L, Peng X Y, Zhong J X 2014 J. Phys. D: Appl. Phys. 47 75301

    [42]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Gaghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826

    [43]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271

    [44]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604

    [45]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [46]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 16963

  • [1]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [2]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664

    [3]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [4]

    Patil S, Harle A, Sathaye S, Patil K 2014 Cryst. Eng. Comm. 16 10845

    [5]

    Nrskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23

    [6]

    Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J 2012 Science 335 698

    [7]

    Garrett B R, Polen S M, Click K A, He M F, Huang Z J, Hadad C M, Wu Y Y 2016 Inorg. Chem. 55 3960

    [8]

    Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A 2015 Catal. Sci. Technol. 5 4133

    [9]

    Weng B, Zhang X, Zhang N, Tang Z R, Xu Y J 2015 Langmuir 31 4314

    [10]

    Chen Y J, Tian G H, Shi Y H, Xiao Y T, Fu H G 2015 Appl. Catal. B: Environ. 164 40

    [11]

    Meng F, Li J, Cushing S K, Zhi M, Wu N 2013 J. Am. Chem. Soc. 135 10286

    [12]

    Zhao M, Chang M J, Wang Q, Zhu Z T, Zhai X P, Zirak M, Moshfegh A Z, Song Y L, Zhang H L 2015 Chem. Commun. 51 12262

    [13]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [14]

    Fu Y S, Wang X 2011 Ind. Eng. Chem. Res. 50 7210

    [15]

    Yun H N, Iwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607

    [16]

    Xu T G, Zhang L W, Cheng H Y, Zhu Y F 2011 Appl. Catal. B: Environ. 101 382

    [17]

    Li H L, Yu K, Li C, Tang Z, Guo B J, Lei X, Fu H, Zhu Z Q 2015 Sci. Rep. 5 18730

    [18]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [19]

    Kumar N A, Dar M A, Gul R, Baek J B 2015 Mater. Today 18 286

    [20]

    Min S X, Lu G X 2012 J. Phys. Chem. C 116 25415

    [21]

    Carraro F, Calvillo L, Cattelan M, Favaro M, Righetto M, Nappini S, P I, Celorrio V, Fermn D J, Martucci A, Agnoli S, Granozzi G 2015 ACS Appl. Mater. Interfaces 7 25685

    [22]

    Deng Z H, Li L, Ding W, Xiong K, Wei Z D 2015 Chem. Commun. 51 1893

    [23]

    Jaramillo T F, Jrgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I B 2007 Science 317 100

    [24]

    Jin C J, Rasmussen F A, Thygesen K S 2016 J. Phys. Chem. C 120 1352

    [25]

    Aziza Z B, Henck H, Felice D D, Pierucci D, Chaste J, Naylor C H, Balan A, Dappe Y J, Johnson A T C, Ouerghi A 2016 Carbon 110 396

    [26]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [28]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [30]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys: Condens. Matter 14 2717

    [33]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [34]

    Jiang J W 2015 Front. Phys. 10 287

    [35]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T, Asensio M C, Ouerqhi A 2016 Nano Lett. 16 4054

    [36]

    Zhu J D, Zhang J C, Hao Y 2016 Jpn. J. Appl. Phys. 55 080306

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417

    [39]

    Low J X, Cao S W, Yu J G, Wageh S 2014 Chem. Commun. 50 10768

    [40]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [41]

    Huang Z Y, He C Y, Qi X, Yang H, Liu W L, Wei X L, Peng X Y, Zhong J X 2014 J. Phys. D: Appl. Phys. 47 75301

    [42]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Gaghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826

    [43]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271

    [44]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604

    [45]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [46]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 16963

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [6] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [7] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [8] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles. Acta Physica Sinica, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [10] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [11] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [13] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [15] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [16] Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong. Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Physica Sinica, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [17] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [18] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [19] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
Metrics
  • Abstract views:  9581
  • PDF Downloads:  739
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2016
  • Accepted Date:  21 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map