-
The chemisorption of Cl atoms on the γ-TiAl(111) surface is investigated by density functional theory. The calculated results show that the more stable sites for Cl atoms adsorption are the surface face-centred cubic (fcc) sites and the surface hexagonal close-packed (hcp) sites. When the coverage of Cl is less than 1 monolayer (ML), Cl atoms prefer the adsorption site with more Ti atoms as its nearest neighbors on the surface layer. From the analysis of the electronic structures, it can be found that the bonds formed by Cl and metal atoms are mainly ionic and directional. When Cl and O atoms are co-adsorbed on γ-TiAl(111) surface, both of them prefer the fcc and hcp sites. As a result, there is a competition between them. Furthermore, the adsorption energy per oxygen atom is increased by the adsorption of Cl atoms, which indicates that interactions between oxgen and metal atoms are weakened by the adsorption of Cl atoms on γ-TiAl(111) surface. This may be one of the reasons why the oxidation resistance of γ-TiAl can be improved by chlorine treatment.
-
Keywords:
- γ-TiAl(111) surface /
- coverage /
- adsorption energy
[1] Froes F H, Suryanarayana C, Eliezer D 1992 J. Mater. Sci. 27 5113
[2] Loria E A 2000 Intermetallics 8 1339
[3] Clemens H, Kestler H 2000 Adv. Engng. Mater. 2 551
[4] Becker S, Rahmel A, Quadakkers W J, Schütze M 1992 Oxid. Met. 38 425
[5] Rahmel A, Quadakkers W J, Schütze M 1995 Mater. Corros. 46 217
[6] Zhou C G, Xu H B, Gong S K, Liu F S 2000 Acta Aero. Sin. 21 87 (in Chinese)[周春根、徐惠彬、宫声凯、刘福顺 2000 航空学报 21 87]
[7] Yoshihara M, Miura K 1995 Intermetallics 3 357
[8] Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58S 224 (in Chinese)[李 虹、王绍青、叶恒强 2009 224] 〖9] Dai Y B, Shu D, Sun B D, Wang J, Zhu G L 2009 Acta Phys. Sin. 58 204 (in Chinese)[戴永兵、疏 达、孙宝德、王 俊、祝国梁 2009 58 204]
[9] Wang X J, Chang H W, Lei M K 2001 Acta Metall. Sin. 37 810 (in Chinese)[王兴军、常海威、雷明凯 2001 金属学报 37 810]
[10] Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽、王崇愚、于 涛 2007 56 2838]
[11] Liang W, Zhao X G 2001 Scripta. Mater. 44 1049
[12] Kumagai M, Shibue K, Kim M S, Yonemitsu M 1996 Intermetallics 4 557
[13] Taniguchi S 1997 Mater. Corros. 48 1
[14] Schutze M, Hald M 1997 Mater. Sci. Engng. A 239—240 847
[15] Donchey A, Gleeson B, Schutze M 2003 Intermetallics 11 387
[16] Hohenberg P, Kohn W 1964 Phys. Rev. 136 864
[17] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[18] Kresse G, Hafner J 1993 Phys. Rev. B 48 13115
[19] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[24] Brandes E A 1983 Smithells Metal Reference Book (London: Butterworth)
[25] Benedek R, van de Walle A, Gerstl S A, Asta M, Seidman D N 2005 Phys. Rev. B 71 094201
[26] Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 10667
[27] Bengtsson L 1999 Phys. Rev. B 59 12301
[28] Xin L, Li T F, Li M S, Zhou L J 1999 Corr. Prot. 11 129(in Chinese)[辛 丽、李铁藩、李美栓、周龙江 1999 腐蚀与防护 11 129]
[29] Gong H R 2009 Intermetallics 17 562
[30] Liu S Y, Wang F H, Zhou Y S, Shang J X 2007 J. Phys.: Condens Matter 19 226004
[31] Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212
[32] Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408
[33] Liu S Y, Shang J X, Wang F H, Zhang Y 2009 Phys. Rev. B 79 075419
-
[1] Froes F H, Suryanarayana C, Eliezer D 1992 J. Mater. Sci. 27 5113
[2] Loria E A 2000 Intermetallics 8 1339
[3] Clemens H, Kestler H 2000 Adv. Engng. Mater. 2 551
[4] Becker S, Rahmel A, Quadakkers W J, Schütze M 1992 Oxid. Met. 38 425
[5] Rahmel A, Quadakkers W J, Schütze M 1995 Mater. Corros. 46 217
[6] Zhou C G, Xu H B, Gong S K, Liu F S 2000 Acta Aero. Sin. 21 87 (in Chinese)[周春根、徐惠彬、宫声凯、刘福顺 2000 航空学报 21 87]
[7] Yoshihara M, Miura K 1995 Intermetallics 3 357
[8] Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58S 224 (in Chinese)[李 虹、王绍青、叶恒强 2009 224] 〖9] Dai Y B, Shu D, Sun B D, Wang J, Zhu G L 2009 Acta Phys. Sin. 58 204 (in Chinese)[戴永兵、疏 达、孙宝德、王 俊、祝国梁 2009 58 204]
[9] Wang X J, Chang H W, Lei M K 2001 Acta Metall. Sin. 37 810 (in Chinese)[王兴军、常海威、雷明凯 2001 金属学报 37 810]
[10] Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽、王崇愚、于 涛 2007 56 2838]
[11] Liang W, Zhao X G 2001 Scripta. Mater. 44 1049
[12] Kumagai M, Shibue K, Kim M S, Yonemitsu M 1996 Intermetallics 4 557
[13] Taniguchi S 1997 Mater. Corros. 48 1
[14] Schutze M, Hald M 1997 Mater. Sci. Engng. A 239—240 847
[15] Donchey A, Gleeson B, Schutze M 2003 Intermetallics 11 387
[16] Hohenberg P, Kohn W 1964 Phys. Rev. 136 864
[17] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[18] Kresse G, Hafner J 1993 Phys. Rev. B 48 13115
[19] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[24] Brandes E A 1983 Smithells Metal Reference Book (London: Butterworth)
[25] Benedek R, van de Walle A, Gerstl S A, Asta M, Seidman D N 2005 Phys. Rev. B 71 094201
[26] Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 10667
[27] Bengtsson L 1999 Phys. Rev. B 59 12301
[28] Xin L, Li T F, Li M S, Zhou L J 1999 Corr. Prot. 11 129(in Chinese)[辛 丽、李铁藩、李美栓、周龙江 1999 腐蚀与防护 11 129]
[29] Gong H R 2009 Intermetallics 17 562
[30] Liu S Y, Wang F H, Zhou Y S, Shang J X 2007 J. Phys.: Condens Matter 19 226004
[31] Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212
[32] Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408
[33] Liu S Y, Shang J X, Wang F H, Zhang Y 2009 Phys. Rev. B 79 075419
Catalog
Metrics
- Abstract views: 8999
- PDF Downloads: 815
- Cited By: 0