-
The experimental studies of the effect of W-doping on conductivity of anatase TiO2 have opposite conclusions when the W-doping concentration is in a range from 0.02083 to 0.04167. To solve the conflict, two supercell models for Ti0.97917W0.02083O2 and Ti0.95833W0.04167O2 are set up for optimizing their geometries and calculating their band structures and the densities of states based on the first-principles plane-wave norm-conserving pseudopotential of the density functional theory. The electron concentration, electron effective mass, electronic mobility, and electronic conductivity are calculated as well. The calculated results show that both electronic conductivity and conductive property of the doped system increase while the electron effective mass decreases, with the increase of W-doping concentration in the presence or absence of electron spin. The conductive property of Ti0.95833W0.04167O2 system is better than that of Ti0.97917W0.02083O2 system, which is further proved by the analyses of ionization energy and Bohr radius. To analyze the stability and formation energy of W-doped anatase TiO2, two more supercell models for Ti0.96875W0.03125O2 and Ti0.9375W0.0625O2 are set up combined with the geometry optimization. The calculated results show that the total energy and the formation energy increase while the stability of the doped system decreases, with the increase of W-doping concentration in a range from 0.02083 to 0.04167 in the presence or absence of electron spin. Meanwhile the W-doping becomes more difficult. A comparison of the doped system with the pure anatase TiO2 shows that the lattice constant along the a-axis of the W-doped anatase TiO2 increases, and its lattice constant along the c-axis and volume increase as well. The calculated results agree with the experimental results. The doped system becomes a half-metal diluted magnetic semiconductor with a room temperature ferromagnetism in the presence of electron spin.
-
Keywords:
- W-doped /
- anatase TiO2 /
- physical properties /
- first-principle
[1] Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58
[2] Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863
[3] Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20
[4] Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348
[5] Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904
[6] Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513
[7] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[8] Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331
[9] Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458
[10] Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502
[11] Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101
[12] Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801
[13] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[14] Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63
[15] Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]
[16] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[17] Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707
[18] Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140
[19] Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717
[20] Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73
[22] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[23] Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944
[24] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604
[25] Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042
[26] Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]
[27] Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705
[28] Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212
[29] Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321
[30] Roberts S 1949 Phys. Rev. 76 1215
[31] Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094
[32] Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698
[33] Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403
[34] Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]
[35] Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418
-
[1] Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58
[2] Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863
[3] Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20
[4] Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348
[5] Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904
[6] Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513
[7] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[8] Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331
[9] Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458
[10] Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502
[11] Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101
[12] Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801
[13] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[14] Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63
[15] Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]
[16] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[17] Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707
[18] Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140
[19] Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717
[20] Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73
[22] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[23] Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944
[24] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604
[25] Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042
[26] Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]
[27] Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705
[28] Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212
[29] Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321
[30] Roberts S 1949 Phys. Rev. 76 1215
[31] Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094
[32] Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698
[33] Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403
[34] Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]
[35] Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418
Catalog
Metrics
- Abstract views: 6074
- PDF Downloads: 257
- Cited By: 0