Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A first-principle study of the effect of W-doping on physical properties of anatase TiO2

Hou Qing-Yu Zhao Chun-Wang

Citation:

A first-principle study of the effect of W-doping on physical properties of anatase TiO2

Hou Qing-Yu, Zhao Chun-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The experimental studies of the effect of W-doping on conductivity of anatase TiO2 have opposite conclusions when the W-doping concentration is in a range from 0.02083 to 0.04167. To solve the conflict, two supercell models for Ti0.97917W0.02083O2 and Ti0.95833W0.04167O2 are set up for optimizing their geometries and calculating their band structures and the densities of states based on the first-principles plane-wave norm-conserving pseudopotential of the density functional theory. The electron concentration, electron effective mass, electronic mobility, and electronic conductivity are calculated as well. The calculated results show that both electronic conductivity and conductive property of the doped system increase while the electron effective mass decreases, with the increase of W-doping concentration in the presence or absence of electron spin. The conductive property of Ti0.95833W0.04167O2 system is better than that of Ti0.97917W0.02083O2 system, which is further proved by the analyses of ionization energy and Bohr radius. To analyze the stability and formation energy of W-doped anatase TiO2, two more supercell models for Ti0.96875W0.03125O2 and Ti0.9375W0.0625O2 are set up combined with the geometry optimization. The calculated results show that the total energy and the formation energy increase while the stability of the doped system decreases, with the increase of W-doping concentration in a range from 0.02083 to 0.04167 in the presence or absence of electron spin. Meanwhile the W-doping becomes more difficult. A comparison of the doped system with the pure anatase TiO2 shows that the lattice constant along the a-axis of the W-doped anatase TiO2 increases, and its lattice constant along the c-axis and volume increase as well. The calculated results agree with the experimental results. The doped system becomes a half-metal diluted magnetic semiconductor with a room temperature ferromagnetism in the presence of electron spin.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 11272142), the “Spring Sunshine” Project of the Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58

    [2]

    Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863

    [3]

    Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20

    [4]

    Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348

    [5]

    Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904

    [6]

    Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513

    [7]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [8]

    Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331

    [9]

    Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458

    [10]

    Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502

    [11]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [12]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [13]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [14]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [15]

    Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]

    [16]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [17]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [18]

    Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717

    [20]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73

    [22]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [23]

    Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944

    [24]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [25]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [26]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]

    [27]

    Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705

    [28]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094

    [32]

    Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698

    [33]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [34]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]

    [35]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

  • [1]

    Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58

    [2]

    Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863

    [3]

    Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20

    [4]

    Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348

    [5]

    Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904

    [6]

    Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513

    [7]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [8]

    Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331

    [9]

    Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458

    [10]

    Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502

    [11]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [12]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [13]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [14]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [15]

    Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]

    [16]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [17]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [18]

    Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717

    [20]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73

    [22]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [23]

    Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944

    [24]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [25]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [26]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]

    [27]

    Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705

    [28]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094

    [32]

    Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698

    [33]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [34]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]

    [35]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

  • [1] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [2] Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles. Acta Physica Sinica, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [3] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [4] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [6] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] Zheng Shu-Wen, Fan Guang-Han, He Miao, Zhao Ling-Zhi. Theoretical study of the effect of W-doping on the conductivity of β-Ga2O3. Acta Physica Sinica, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] Xie Dong, Leng Yong-Xiang, Huang Nan. Deposition and first-principles caculation of carbon-doped titanium monoxide films. Acta Physica Sinica, 2013, 62(19): 198103. doi: 10.7498/aps.62.198103
    [9] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] Zhang Xue-Jun, Zhang Guang-Fu, Jin Hui-Xia, Zhu Liang-Di, Liu Qing-Ju. First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt. Acta Physica Sinica, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [11] Li Zong-Bao, Wang Xia, Jia Li-Chao. Synergistic effects in Fe/N codoped anatase TiO2 (101) surface:a theoretical study based on density functional theory calculation. Acta Physica Sinica, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [12] Zheng Shu-Kai, Wu Guo-Hao, Liu Lei. First-principles calculations of P-doped anatase TiO2. Acta Physica Sinica, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [13] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [14] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [15] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [16] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [17] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhang Bing. First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2. Acta Physica Sinica, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] Xu Ling, Tang Chao-Qun, Qian Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2. Acta Physica Sinica, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [19] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  6074
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2015
  • Accepted Date:  07 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map