-
Laser-induced breakdown spectroscopy (LIBS), which is also known as laser-induced plasma spectroscopy (LIPS), is a very promising spectral analysis technique for detecting elemental composition. The possibility of remote operation of LIBS is one of the properties, which expands the application scope of this technique. The remote LIBS technique is based on a long-range lens. With the increase of focusing distance, it is difficult to tightly focus laser pulse due to the diffraction limits. The size of focusing spot increases with focusing distance increasing. This will require extremely high laser energy. Femtosecond laser filamentation due to optical Kerr effect can be applied to the remote LIBS. During the filament propagation, the waist of laser beam is close to a constant value. The laser intensity inside the filament is about 1013 W/cm2 (intensity clamping). The intensity is sufficient to ablate sample and produce the plasma. It can overcome the influence of the diffraction limit in nanosecond LIBS. Although many researchers have studied the femtosecond geometrical focusing and femtosecond filamentation LIBSs, the spectral characteristics have not been completely understood. In this paper, we study the femtosecond laser filament-induced Cu plasma spectroscopy. Femtosecond laser system is an ultrafast Ti:sapphire amplifier (Coherent Libra). The full-width at the half maximum is 50 fs at a wavelength of 800 nm with a repetition rate of 1 kHz and its output energy is 3.5 mJ. A quartz lens with a focal length of 1 m is used to focus the laser to generate a filament channel. The spectral intensity of produced Cu plasma along the filament channel is measured by using the optical emission spectroscopy, and the distribution of Cu(I) intensity versus the distance between sample and focused lens is obtained. The results indicate that in a longer distance range along the filament, plasma spectroscopy has stronger emission due to the intensity clamping effect in femtosecond laser filamentation. In addition, we also calculate the plasma temperature and electron density by using the Boltzmann plot and the Stark broadening. The plasma temperature and electron density along the filament channel can be divided into three main regions: region 1) from 950 mm to 970 mm, in which the plasma temperature and electron density increase with the increase of distance; region 2) from 970 mm to 1030 mm, in which the change of plasma excitation temperature is opposite to the change of electron density; region 3) from 1030 mm to 1050 mm, in which the plasma temperature and electron density decrease with the increase of distance.
-
Keywords:
- laser-induced breakdown spectroscopy /
- femtosecond laser filament /
- plasma temperature /
- electron density
[1] Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257
[2] Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061
[3] Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 60 045206]
[4] Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640
[5] Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206]
[6] Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025
[7] Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124
[8] Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732
[9] Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)
[10] Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836
[11] Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195
[12] Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968
[13] Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941
[14] Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977
[15] Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 63 095203]
[16] Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 64 175203]
[17] Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90
[18] Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301
[19] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497
[20] Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819
[21] Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]
-
[1] Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257
[2] Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061
[3] Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 60 045206]
[4] Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640
[5] Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206]
[6] Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025
[7] Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124
[8] Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732
[9] Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)
[10] Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836
[11] Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195
[12] Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968
[13] Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941
[14] Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977
[15] Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 63 095203]
[16] Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 64 175203]
[17] Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90
[18] Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301
[19] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497
[20] Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819
[21] Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]
Catalog
Metrics
- Abstract views: 6452
- PDF Downloads: 302
- Cited By: 0