Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-core terahertz polarization splitter based on porous fibers with near-tie units

Wang Jing-Li Liu Yang Zhong Kai

Citation:

Dual-core terahertz polarization splitter based on porous fibers with near-tie units

Wang Jing-Li, Liu Yang, Zhong Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Terahertz (THz) radiation, which is defined as the electromagnetic wave with a frequency ranging from 0.1 THz to 10 THz, has attracted widespread attention in recent years because of its unique possibilities in many fields. High-performance THz polarization splitter, a key device in THz manipulation, is of great significance for studying the THz devices. In the present paper, a novel dual-core THz polarization splitter is proposed, which is based on porous fiber with near-tie units. The introduction of near-tie units into the fiber core can enhance asymmetry to realize high mode birefringence. And the results show that the porous THz fiber exhibits high birefringence at a level of 10-2 over a wide frequency range. An index converse matching coupling (ICMC) method, which exhibits several advantages (such as short splitting length, high extinction ratio, low loss, and broad operation bandwidth), is used to allow for the coupling of one polarization mode within a broad operation band, while the coupling of the other polarization component is effectively inhibited. The splitting length is equal to one coupling length of x- or y-polarization component for which inter-core coupling occurs, and short splitting length means low transmission loss. Unlike the reported filling method, an adjusting structure method is proposed in the paper to satisfy the condition of index converse matching coupling. The full vector finite element method (FEM), which is based on the variational principle and the subdivision interpolation, is used to analyze the guiding properties of the proposed THz polarization splitter. The FEM is a widely used numerical method in physical modeling and simulation. Simulation results show that the THz polarization splitter operates within a wide frequency range of 0.5-2.5 THz. The splitting length does not exceed 2.5 cm in the whole frequency range and the minimum is only 0.428 cm. At 2.3 THz, the material absorption losses of x- and y-polarization are both less than 0.35 dB, and the extinction ratios for x- and y-polarization are 2.9 and 19.2 dB, respectively. Moreover, by comparing with a THz polarization splitter with filling method, the proposed THz polarization with adjusting structure method is easier to realize, the operating frequency range is wider, the splitting length is shorter, and the material absorption loss is lower. Finally, we note that the fabrication of such THz porous fiber designs could be realized by several methods, such as a capillary stacking technique, a polymer casting technique, a hole drilling technique, etc.
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the Key laboratory of Opto-electronic Information Technology, Ministry of Education(Tianjin University), China (Grant No. 2014KFKT003), the National Natural Science Foundation of China (Grant No. 61571237), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61405096), the Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, China (Grant No. 2015GZKF03006), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0201).
    [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693

    [2]

    Yong L, Han K, Lee B, Jung J 2003 Opt. Express 11 3359

    [3]

    Florous N, Saitoh K, Koshiba M 2005 Opt. Express 13 7365

    [4]

    Zhang S, Zhang W, Geng P, Li X, Ruan J 2011 Appl. Opt. 50 6576

    [5]

    Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q 2014 Opt. Express 22 30461

    [6]

    Mao D, Guan C, Yuan L 2010 App. Opt. 49 3748

    [7]

    Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940

    [8]

    Wen K, Wang R, Wang J Y, Li J H 2008 Chinese Journal of Lasers 35 1962 (in Chinese)[文科, 王荣, 汪井源, 李建华2008中国激光35 1962]

    [9]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)[白晋军, 王昌辉, 侯宇, 范飞, 常胜江2012 61 108701]

    [10]

    Jiang Z W, Bai J J, Hou Y, Bai X H, Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)[姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江2013 62 028702]

    [11]

    Li S S, Zhang H, Bai J, Liu W 2014 IEEE Photonics Technol. Lett. 26 1399

    [12]

    Zhu Y F 2014 Ph. D. Dissertation (ZhenJiang:Jiangsu University) (in Chinese)[祝远锋2014博士学位论文(镇江:江苏大学)]

    [13]

    Hou Y 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[侯宇2013博士学位论文(天津:南开大学)]

    [14]

    Wang C H 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[王昌辉2013博士学位论文(天津:南开大学)]

    [15]

    Wang J L, Yao J, Chen H, Zhong K, Li Z 2011 J. Opt. 13 994

    [16]

    Wang J L 2011 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[汪静丽2011博士学位论文(天津:天津大学)]

    [17]

    Ma J R 2007 M. S. Thesis(Hebei:Yanshan University) (in Chinese)[马景瑞2007硕士学位论文(河北:燕山大学)]

  • [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693

    [2]

    Yong L, Han K, Lee B, Jung J 2003 Opt. Express 11 3359

    [3]

    Florous N, Saitoh K, Koshiba M 2005 Opt. Express 13 7365

    [4]

    Zhang S, Zhang W, Geng P, Li X, Ruan J 2011 Appl. Opt. 50 6576

    [5]

    Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q 2014 Opt. Express 22 30461

    [6]

    Mao D, Guan C, Yuan L 2010 App. Opt. 49 3748

    [7]

    Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940

    [8]

    Wen K, Wang R, Wang J Y, Li J H 2008 Chinese Journal of Lasers 35 1962 (in Chinese)[文科, 王荣, 汪井源, 李建华2008中国激光35 1962]

    [9]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)[白晋军, 王昌辉, 侯宇, 范飞, 常胜江2012 61 108701]

    [10]

    Jiang Z W, Bai J J, Hou Y, Bai X H, Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)[姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江2013 62 028702]

    [11]

    Li S S, Zhang H, Bai J, Liu W 2014 IEEE Photonics Technol. Lett. 26 1399

    [12]

    Zhu Y F 2014 Ph. D. Dissertation (ZhenJiang:Jiangsu University) (in Chinese)[祝远锋2014博士学位论文(镇江:江苏大学)]

    [13]

    Hou Y 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[侯宇2013博士学位论文(天津:南开大学)]

    [14]

    Wang C H 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[王昌辉2013博士学位论文(天津:南开大学)]

    [15]

    Wang J L, Yao J, Chen H, Zhong K, Li Z 2011 J. Opt. 13 994

    [16]

    Wang J L 2011 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[汪静丽2011博士学位论文(天津:天津大学)]

    [17]

    Ma J R 2007 M. S. Thesis(Hebei:Yanshan University) (in Chinese)[马景瑞2007硕士学位论文(河北:燕山大学)]

  • [1] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [5] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [6] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [8] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [11] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] Li Shan-Shan, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei, Chang Sheng-Jiang. Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method. Acta Physica Sinica, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [13] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [14] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [16] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [17] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [18] Fan Fei, Guo Zhan, Bai Jin-Jun, Wang Xiang-Hui, Chang Sheng-Jiang. Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller. Acta Physica Sinica, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [19] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [20] Meng Tian-Hua, Zhao Guo-Zhong, Zhang Cun-Lin. Study of enhanced transmission of terahertz radiation through subwavelength fractals structures. Acta Physica Sinica, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
Metrics
  • Abstract views:  6238
  • PDF Downloads:  196
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2016
  • Accepted Date:  18 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map