-
A novel broadband polarization beam splitter (PBS) based on dual-core photonic crystal fiber is proposed. With a full-vector finite element method, the effects of structural parameters of fiber on the bandwidth and length of PBS are systematically investigated in detail. Numerical results indicate that an increase in the index of fluorine-doped region can not only broaden the bandwidth but also shorten the length of PBS. An increase in the diameters of air hole and hole pitch in an optical fiber can broaden the bandwidth of PBS, however, lengthen the length of PBS at the same time. Thus, it is necessary to balance the bandwidth and length of PBS when selecting the fiber structure parameters. Through optimizing the fiber structure parameters mentioned above, a kind of ultra-broadband PBS is achieved. When the extinction ratio is greater than 20 dB, the length of PBS is as short as 7.362 mm and its bandwidth is more than 600 nm.
-
Keywords:
- photonic crystal fiber /
- polarization beam splitter /
- ultra-broadband /
- full-vector finite element method
[1] Florous N J, Saitoh K, Koshiba M 2006 IEEE Photon. Technol. Lett. 18 1231
[2] Lu W L, Lou S Q, Wang X, Wang L W, Feng R J 2013 Appl. Opt. 52 449
[3] Zhang X, Liao Q H, Chen S W, Hu P, Yu T B, Liu N H 2011 Acta Phys. Sin. 60 104215 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 60 104215]
[4] Wang L W, Lou S Q, Chen W G, Lu W L, Wang X 2012 Acta Phys. Sin. 61 154207 (in Chinese) [王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫 2012 61 154207]
[5] Peng G D, Tjugiarto T M, Chu P L 1990 Electron. Lett. 26 682
[6] Broderick N G R, Monro T M, Bennett P J, Richardson D J 1999 Opt. Lett. 24 1395
[7] Knight J C, Birks T A, Cregan R F, Russell P S J, de Sandro P D 1998 Electron. Lett. 34 1347
[8] Birks T A, Knight J C, Russell P S J 1997 Opt. Lett. 22 961
[9] Lou S Q, Fang H, Guo T Y, Jian S S 2006 Chin. Phys. Lett. 23 860
[10] Zhang L, Yang C X 2003 Opt. Express 11 1015
[11] Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940
[12] Rosa L, Poli F, Foroni M, Cucinotta A, Selleri S 2006 Opt. Lett. 31 441
[13] Li J H, Wang J Y, Wang R, Liu Y 2011 Opt. Laser Technol. 43 795
[14] Ren G B, Wang Z, Jian S S, Lou S Q 2004 Acta Phys. Sin. 53 2600 (in Chinese) [任国斌, 王智, 简水生, 娄淑琴 2004 53 2600]
[15] Lou S Q, Tang Z W, Wang L W 2011 Appl. Opt. 50 2016
[16] Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Phys. Sin. 59 5547 (in Chinese) [郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 59 5547]
-
[1] Florous N J, Saitoh K, Koshiba M 2006 IEEE Photon. Technol. Lett. 18 1231
[2] Lu W L, Lou S Q, Wang X, Wang L W, Feng R J 2013 Appl. Opt. 52 449
[3] Zhang X, Liao Q H, Chen S W, Hu P, Yu T B, Liu N H 2011 Acta Phys. Sin. 60 104215 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 60 104215]
[4] Wang L W, Lou S Q, Chen W G, Lu W L, Wang X 2012 Acta Phys. Sin. 61 154207 (in Chinese) [王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫 2012 61 154207]
[5] Peng G D, Tjugiarto T M, Chu P L 1990 Electron. Lett. 26 682
[6] Broderick N G R, Monro T M, Bennett P J, Richardson D J 1999 Opt. Lett. 24 1395
[7] Knight J C, Birks T A, Cregan R F, Russell P S J, de Sandro P D 1998 Electron. Lett. 34 1347
[8] Birks T A, Knight J C, Russell P S J 1997 Opt. Lett. 22 961
[9] Lou S Q, Fang H, Guo T Y, Jian S S 2006 Chin. Phys. Lett. 23 860
[10] Zhang L, Yang C X 2003 Opt. Express 11 1015
[11] Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940
[12] Rosa L, Poli F, Foroni M, Cucinotta A, Selleri S 2006 Opt. Lett. 31 441
[13] Li J H, Wang J Y, Wang R, Liu Y 2011 Opt. Laser Technol. 43 795
[14] Ren G B, Wang Z, Jian S S, Lou S Q 2004 Acta Phys. Sin. 53 2600 (in Chinese) [任国斌, 王智, 简水生, 娄淑琴 2004 53 2600]
[15] Lou S Q, Tang Z W, Wang L W 2011 Appl. Opt. 50 2016
[16] Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Phys. Sin. 59 5547 (in Chinese) [郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 59 5547]
Catalog
Metrics
- Abstract views: 6684
- PDF Downloads: 758
- Cited By: 0