搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔行分层填充的太赫兹超高双折射多孔光纤

李珊珊 张昊 白晋军 刘伟伟 常胜江

引用本文:
Citation:

隔行分层填充的太赫兹超高双折射多孔光纤

李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江

Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method

Li Shan-Shan, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei, Chang Sheng-Jiang
PDF
导出引用
  • 本文提出了一种对普通三角晶格多孔光纤隔行分层填充匹配材料, 实现超高模式双折射的方法. 首先, 采用全矢量有限元法对多孔度为43.08%的三角晶格多孔光纤的传输特性进行了详细研究. 随后, 为增强结构非对称性对纤芯空气孔隔行填充折射率为1.4的液体, 发现光纤的模式双折射显著提高, 在峰值处(1.1 THz)由填充前的1.05×10-3增大到1.36×10-2; x, y两偏振模式基模的吸收损耗系数分别由0.16 dB/cm增大到0.25 dB/cm和0.28 dB/cm; 光纤的工作带宽由1.1 THz增大到1.9 THz. 研究发现通过增大填充材料的折射率能够显著提高光纤的模式双折射; 当n=2, f=2.2 THz时, 光纤能够达到8.03×10-2的超高模式双折射. 进一步, 采用隔行分层填充的方式, 在不同层填充不同折射率的液体, 实现折射率的梯度分布, 从而增强光纤对导模的限制能力. 结果显示, 采用该填充方法, 光纤的模式双折射在工作频段内没有峰值, 呈现单调递增的趋势. 当f=2.2 THz时, 模式双折射达到7.19×10-2. 该设计不仅实现了超高的模式双折射, 同时还具备可调谐的特性, 对实际应用具有重要意义.
    In this paper, an interlacing layered infiltration method is proposed, using some liquid material as the common porous fiber with triangular air-hole array in the core region, which can achieve the characteristic of ultrahigh modal birefringence in this circumstance. Förstly, the basic properties of the porous fiber with a porosity of 43.08% are thoroughly analyzed by using a full-vector finite element method, as wellas the dispersion curves of the fiber, modal birefringence, fraction of the fundamental modal power for x and y polarizations, loss characteristics, etc. Secondly, to enhance the asymmetry of the proposed structure, some liquid material with a refractive index of 1.4 is infiltrated into the air holes in the fiber core region, by using interlacing filling method. It is found that the modal birefringence of the fiber dramatically increases. At an operation frequency of 1.1 THz, the peak value of modal birefringence rises from 1.05×10-3 to 1.36×10-2 after the infiltration operation. The fundamental model effective material absorption loss coefficients for x and y polarization modes increase from 0.16 dB/cm to 0.25 dB/cm and 0.28 dB/cm, respectively. And the operation frequency band increases from 1.1 to 1.9 THz. Simulation results indicate that the modal birefringence of the fiber can be remarkably improved by increasing the refractive index of the infiltrated liquid material. With an operation frequency of 2.2 THz and a refractive index of 2, this fiber can realize an ultrahigh modal birefringence of 8.03×10-2. Moreover, to achieve the gradient distribution of the refractive index, an interlacing layered infiltration method to infiltrate the liquid material with different refractive indices in different layers is employed. Results show that the confinement capability to the guided modes has been greatly enhanced. Results also show that the peak value of the modal birefringence for the fundamental modes does not exist in the operation band. It represents a monotonically increasing trend. At an operation frequency of 2.2 THz, the fiber modal birefringence can reach as high as 7.19×10-2. This scheme presents an ultrahigh modal birefringence, and it presents the tunable characteristic as well. This study may be of significance in the practical applications in the field of THz functional devices.
    • 基金项目: 国家重点基础研究发展计划(973项目)(批准号: 2014CB339800), 国家高技术研究发展计划(863)(批准号: 2013AA014201)、国家自然科学基金(批准号: 61171027; 11274182; 11004110)、教育部博士点基金(批准号: 20090031110033)、天津市科技计划项目(批准号: 13RCGFGX01127)和天津市高等学校科技发展基金计划项目(批准号: 20120706)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant NO. 2014CB339800), the National High Technology Research and Development Program of China (Grant No. 2013AA014201), the National Natural Science Foundation of China (Grant Nos. 61171027, 11274182, 11004110), the Doctoral Fund of Ministry of Education of China (Grant No. 20090031110033), the Science and Technology Program of Tianjin, china (Grant No. 13RCGFGX01127), and the Tianjin City High School Science & Technology Fund Planning Project (Grant No. 20120706).
    [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Xu L, Zhang XC, Auston D 1992 Appl. Phys. Lett. 61 1784

    [3]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 57 7747]

    [4]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Peking University Press) (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社)]

    [5]

    Zhong R B, Zhou J, Liu S G 2012 Journal of University of Electronic Science and Technology of China 2 247 (in Chinese) [钟任斌, 周俊, 刘盛纲 2012 电子科技大学学报 2 247]

    [6]

    Atakaramians S, Afshar S V, Fischer B M, Abbott D, Monro T M 2009 Optics Communications 282 36

    [7]

    Chen D, Chen H 2010 Journal of Electromagnetic Waves and Applications 24 1553

    [8]

    Bai J J, Wang C H, Huo B Z, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese) [白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江 2011 60 098702]

    [9]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A 2000 Opt Lett 25 1325

    [10]

    Wang L, Yang D 2007 Opt. Expr. 15 8892

    [11]

    Wang J L, Yao J Q, Chen H M, Zhong K, Li Z Y 2011 Journal of Opt 13 055402

    [12]

    Wang D D, Wang L L, Zhang T, Jie Y 2014 Acta Phot. Sin. 43 0606002 (in Chinese) [王豆豆, 王丽莉, 张涛, 解忧 2014 光子学报 43 0606002]

    [13]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 59 3255]

    [14]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [15]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H 2011 Journal of Applied Physics 109 043505

    [16]

    Ji J J, Fan W H, Kong D P, Wang L L 2013 Infrared and Laser Engineering 5 1213 (in Chinese) [姬江军, 范文慧, 孔德鹏, 王丽莉 2013 红外与激光工程 5 1213]

    [17]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Appl. Phys. Lett. 92 071101

    [18]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

    [19]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Opt. Express 16 6340

    [20]

    Chen S, Fan F, Chang S J, Miao Y, Chen M, Li J N 2014 Optics Express 22 6313

  • [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Xu L, Zhang XC, Auston D 1992 Appl. Phys. Lett. 61 1784

    [3]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 57 7747]

    [4]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Peking University Press) (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社)]

    [5]

    Zhong R B, Zhou J, Liu S G 2012 Journal of University of Electronic Science and Technology of China 2 247 (in Chinese) [钟任斌, 周俊, 刘盛纲 2012 电子科技大学学报 2 247]

    [6]

    Atakaramians S, Afshar S V, Fischer B M, Abbott D, Monro T M 2009 Optics Communications 282 36

    [7]

    Chen D, Chen H 2010 Journal of Electromagnetic Waves and Applications 24 1553

    [8]

    Bai J J, Wang C H, Huo B Z, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese) [白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江 2011 60 098702]

    [9]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A 2000 Opt Lett 25 1325

    [10]

    Wang L, Yang D 2007 Opt. Expr. 15 8892

    [11]

    Wang J L, Yao J Q, Chen H M, Zhong K, Li Z Y 2011 Journal of Opt 13 055402

    [12]

    Wang D D, Wang L L, Zhang T, Jie Y 2014 Acta Phot. Sin. 43 0606002 (in Chinese) [王豆豆, 王丽莉, 张涛, 解忧 2014 光子学报 43 0606002]

    [13]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 59 3255]

    [14]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [15]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H 2011 Journal of Applied Physics 109 043505

    [16]

    Ji J J, Fan W H, Kong D P, Wang L L 2013 Infrared and Laser Engineering 5 1213 (in Chinese) [姬江军, 范文慧, 孔德鹏, 王丽莉 2013 红外与激光工程 5 1213]

    [17]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Appl. Phys. Lett. 92 071101

    [18]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

    [19]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Opt. Express 16 6340

    [20]

    Chen S, Fan F, Chang S J, Miao Y, Chen M, Li J N 2014 Optics Express 22 6313

  • [1] 戴震飞, 姜文帆, 王玲, 陈明阳, 高永锋, 任乃飞. 基于高折射率液体填充的花瓣形微结构光纤可调滤模特性.  , 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [2] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器.  , 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [3] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器.  , 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [4] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究.  , 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [5] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器.  , 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [6] 苏伟, 娄淑琴, 邹辉, 韩博琳. 一种带葡萄柚空气孔的高双折射ZrF4-BaF2-LaF3-AlF3-NaF光子准晶光纤.  , 2014, 63(14): 144202. doi: 10.7498/aps.63.144202
    [7] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤.  , 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [8] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究.  , 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [9] 曹晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究.  , 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [10] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应.  , 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [11] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究.  , 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [12] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究.  , 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [13] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究.  , 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [14] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应.  , 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [15] 张亚妮. 新型矩形点阵光子晶体光纤的高双折射负色散效应.  , 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [16] 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义. 高双折射纳米结构光子晶体光纤特性研究.  , 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [17] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究.  , 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [18] 张晓娟, 赵建林, 侯建平. 一种新型高双折射光子晶体光纤.  , 2007, 56(8): 4668-4676. doi: 10.7498/aps.56.4668
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布.  , 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能.  , 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  5784
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-20
  • 修回日期:  2015-02-26
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map