Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions

Wang Hong-Guang Zhai Yong-Gui Li Ji-Xiao Li Yun Wang Rui Wang Xin-Bo Cui Wan-Zhao Li Yong-Dong

Citation:

Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions

Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to compute the multipactor thresholds of microwave devices with high efficiency and precision,a novel fast particle-in-cell (PIC) method is proposed,which takes advantage of the frequency-domain (FD) electromagnetic field solver of CST Microwave Studio (MWS).At the initial stage of multipactor (when there are not many electrons in the device),the self-consistent field generated by the electrons is much smaller than the applied electromagnetic field. Therefore it can be ignored in calculating the multipactor threshold and this will significantly reduce the computation burden.During simulations of multipactor process,the FD field pre-calculated by CST MWS is converted into timedomain (TD) scaling with the square root of the input power.Then the electron motion is investigated by Boris algorithm.When the electrons hit the boundaries of the simulation region,where triangular facets from CST are used for discretization,the secondary electrons will be emitted.After a series of simulations with variable input powers,the multipactor threshold is determined according to time evolution of the electron number.The multipactor thresholds in a parallel plate and a coaxial transmission line are investigated,and used as relevant verifications.Compared with the CST Particle Studio (PS),the fast method obtains almost the same thresholds,while the computational efficiency is improved by more than one order of magnitude.Since the self-consistent field generated by the electrons is ignored in the fast method and it is considered in CST PS,the results validate that the self-consistent field can be ignored in calculating the multipactor threshold.Finally,taking for example a parallel plate transmission line and a stepped impedance transformer,we study the effect of the number of initial macro-particles on the calculation precision.When the initial particles are so few that they can hardly reflect the randomness of the multipactor process,a higher calculated value will be resulted in.With the increase of the number of initial macro-particles,the calculated multipactor threshold is lower and more accurate.It is convergent when the number reaches about 2000 for the parallel plate transmission line and 4000 for the stepped impedance transformer,respectively.Taking into account other microwave devices with more complex electromagnetic field distribution,in order to ensure precision,it is recommended to select the number of initial macro-particles to be 8000.In addition,although CST MWS is used to obtain the electromagnetic field and boundary information in this paper,of course,other electromagnetic softwares (such as HFSS) can also be adopted as an alternative.
      Corresponding author: Li Yong-Dong, leyond@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1537210) and the National Key Laboratory of Science and Technology on Space Microwave of China (Grant No. 9140C530101150C53011).
    [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014 63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013 62 025201]

  • [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014 63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013 62 025201]

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Meng Xiang-Chen, Wang Dan, Cai Ya-Hui, Ye Zhen, He Yong-Ning, Xu Ya-Nan. Secondary electron emission suppression on alumina surface and its application in multipactor suppression. Acta Physica Sinica, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng. Effect of secondary electrons on SGEMP response. Acta Physica Sinica, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [4] Chen Long, Sun Shao-Juan, Jiang Bo-Rui, Duan Ping, An Yu-Hao, Yang Ye-Hui. Characteristics of non-Maxwellian magnetized sheath with secondary electron emission. Acta Physica Sinica, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] Wang Dan, Ye Ming, Feng Peng, He Yong-Ning, Cui Wan-Zhao. An effective reduction on secondary electron emission yield of gold coated surfaces by laser etching. Acta Physica Sinica, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [6] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] Hu Jing, Cao Meng, Li Yong-Dong, Lin Shu, Xia Ning. Optimization of surface morphology with micro meter size for suppressing secondary electron emission. Acta Physica Sinica, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [8] Bai Chun-Jiang, Feng Guo-Bao, Cui Wan-Zhao, He Yong-Ning, Zhang Wen, Hu Shao-Guang, Ye Ming, Hu Tian-Cun, Huang Guang-Sun, Wang Qi. Suppressing second electron yield based on porous anodic alumina. Acta Physica Sinica, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [9] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [10] Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang. Particle simulation and analysis of threshold for multicarrier multipactor. Acta Physica Sinica, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [11] Wang Xin-Bo, Li Yong-Dong, Cui Wan-Zhao, Li Yun, Zhang Hong-Tai, Zhang Xiao-Ning, Liu Chun-Liang. Global threshold analysis of multicarrier multipactor based on the critical density of electrons. Acta Physica Sinica, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [12] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [13] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [14] Yang Wen-Jin, Li Yong-Dong, Liu Chun-Liang. Model of secondary electron emission at high incident electron energy for metal. Acta Physica Sinica, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [15] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [16] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [17] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅰ)——Physical model and theoretical methods. Acta Physica Sinica, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [20] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
Metrics
  • Abstract views:  6429
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2016
  • Accepted Date:  04 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map