搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次电子发射对系统电磁脉冲的影响

张含天 周前红 周海京 孙强 宋萌萌 董烨 杨薇 姚建生

引用本文:
Citation:

二次电子发射对系统电磁脉冲的影响

张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生

Effect of secondary electrons on SGEMP response

Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng
PDF
HTML
导出引用
  • 系统电磁脉冲难以有效屏蔽, 会显著影响低轨航天器等重要装置和基础设施的性能. 为了评估二次电子对系统电磁脉冲的影响, 本文基于粒子云网格方法, 建立了三维非稳态系统电磁脉冲模型, 计算并比较了不同电流密度、金属材料等条件下, 两种典型结构的电磁脉冲响应. 结果表明, 在计算模型中忽略二次电子发射会使部分位置的峰值电场强度被低估2—3倍, 电场响应持续的时间也会被低估10%以上. 在各类二次电子中, 背散射电子对系统电磁脉冲的影响占主导, 而真二次电子的作用约为背散射电子的1/5. 二次电子发射对系统电磁脉冲的影响随着系统所用材料原子序数的增高而加大. 空间电荷效应较强时, 二次电子才会对腔体外系统电磁脉冲产生影响. 本研究有助于更好地通过数值模拟来获得具体装置在强辐射环境下的系统电磁脉冲响应.
    It is difficult to effectively shield the system generated electromagnetic pulse (SGEMP), which can significantly affect the performance of important electronic devices and infrastructure, such as low-orbit spacecraft. Numerical simulation is an essential way to study the SGEMP response. However, many previous studies ignored or simplified the effect of secondary electron emission in their models. In this paper, a three-dimensional electromagnetic particle-in-cell numerical simulation model is developed to evaluate the effect of secondary electrons on the SGEMP response of two typical structures (external SGEMP and cavity SGEMP, respectively) under different current densities (0.1–100 A/cm2) and different materials (Al, Cu and Au). A right cylinder or cylindrical cavity with a length of 100 mm is used. The photoelectrons produced by the interaction between the X-ray photon and metal are emitted from one end of the system and assumed to be monoenergetic. The photoelectron pulse follows a sine-squared distribution, and its full width at half maximum is 1 ns. Some important parameters of secondary electrons are discussed and summarized, including the emission coefficients of elastically and inelastically backscattered electrons, as well as the probability density functions of emission angles and energies. The results show that ignoring the secondary emission in the simulation model leads the peak electric field to be underestimated by twice-thrice, and the duration of electric field response by more than 10%. The oscillation frequency and the amplitude of the second peak of the tangential magnetic field are also increased, with the secondary electrons considered. Among various types of secondary electrons, backscattered electrons have a dominant effect on the change of SGEMP. The effect of true secondary electrons is about 1/5 of that of backscattered electrons. The effect of secondary electrons on SGEMP response increases with a higher atomic number of the material used in the system, mainly due to higher backscattering emission coefficient and a high ratio of high energy inelastically backscattered electrons. The secondary electrons will influence the response of the external SGEMP only when the space charge effect is strong (high X-ray fluence). While the response of the cavity SGEMP is more easily affected by the secondary electrons even at a relatively low X-ray fluence. This paper helps to better obtain the SGEMP response of a specific device under strong radiation through numerical simulation.
      通信作者: 周前红, zhou_qianhong@qq.com
    • 基金项目: 国家自然科学基金(批准号: 12005023)资助的课题
      Corresponding author: Zhou Qian-Hong, zhou_qianhong@qq.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 12005023)
    [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋 译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社) 第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Woods A J, Wenaas E P 1976 IEEE Trans. Nucl. Sci. 23 1903Google Scholar

    [6]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [7]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [8]

    王泰春, 王玉芝 1986 计算物理 3 86

    Wang T C, Wang Y Z 1986 Chinese J. Comput. Phys. 3 86

    [9]

    Li J X, Cheng Y H, Wu W, Zhou H 2008 Proceedings of the 14th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology Urumqi, China, July 15−20, 2008 p735

    [10]

    Holland R 1995 IEEE Trans. Electromagn. Compat. 37 433Google Scholar

    [11]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2−7, 2014 p00051

    [12]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [13]

    孙会芳, 张芳, 董志伟 2016 计算物理 33 434Google Scholar

    Sun H F, Zhang F, Dong Z W 2016 Chinese J. Comput. Phys. 33 434Google Scholar

    [14]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [15]

    Chen J H, Chao Z, Deng J H, Li Z D Z 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [16]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [17]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [18]

    Wenaas E P, Woods A J 1976 IEEE Trans. Nucl. Sci. 23 1921Google Scholar

    [19]

    周俊 2009 博士学位论文(成都: 电子科技大学)

    Zhou J 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [20]

    Reimer L 2000 Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (New York: Springer) p4

    [21]

    谢爱根, 裴元吉, 王荣, 孙红兵 2005 高能物理与核物理 5 530

    Xie A G, Pei Y J, Wang R, Sun H B 2005 High Energy Phys. Nuclear Phys. 5 530

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [23]

    Valfells Á, Singh A, Kolander M J, Granatstein V L 2002 IEEE Trans. Plasma Sci. 30 1271Google Scholar

    [24]

    Furman M A, Pivi M T F 2002 Phys. Rev. Spec. Top. - Accel. Beams 5 124404Google Scholar

    [25]

    Sternglass E J 1954 Phys. Rev. 95 345Google Scholar

    [26]

    Joy D C 1995 Scanning 17 270Google Scholar

    [27]

    Hussain A, Yang L H, Mao S F, Da B, Tőkési K, Ding Z H 2021 Nucl. Mater. Energy 26 100862Google Scholar

    [28]

    刘腊群, 刘大刚, 王学琼, 彭凯, 杨超 2012 强激光与粒子束 24 1980Google Scholar

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980Google Scholar

    [29]

    Staub P F 1994 J. Phys. D Appl. Phys. 27 1533Google Scholar

    [30]

    Matsukawa T, Shimizu R, Hashimoto H 1974 J. Phys. D Appl. Phys. 7 695Google Scholar

    [31]

    陈剑楠, 陶应龙, 陈再高, 王玥 2018 现代应用物理 9 040501Google Scholar

    Chen J N, Tao Y L, Chen Z G, Wang Y 2018 Modern Appl. Phys. 9 040501Google Scholar

    [32]

    郭景海, 周辉, 吴伟, 程引会, 李进玺, 马良, 赵墨 2016 核电子学与探测技术 36 512Google Scholar

    Guo J H, Zhou H, Wu W, Cheng Y H, Li J X, Ma L, Zhao M 2016 Nuclear Electronics and Detection Techol. 36 512Google Scholar

  • 图 1  不同原子序数、入射能量条件下, 法向入射电子的背散射电子发射系数(离散点来自Joy[20]总结的实验数据, 实线由式(5)计算)

    Fig. 1.  Backscattering coefficient of normally incident electrons for different Ein and atomic numbers. Symbols, experimental data from Joy[20]; lines, calculated by Equation (5).

    图 2  计算模型示意图 (a)腔体外SGEMP; (b)腔体内SGEMP

    Fig. 2.  Schematics of the calculation domain: (a) The external SGEMP; (b) the internal SGEMP.

    图 3  不同时刻电子的空间分布(J0 = 5 A/cm2, E0 = 5 keV). (a)(b)(c)考虑二次电子发射; (d)无二次电子发射的情况

    Fig. 3.  Distribution of electrons at different moments on the condition J0 = 5 A/cm2 and E0 = 5 keV: (a)(b)(c)Including secondary emission; (d)without secondary electrons.

    图 4  不同峰值电流密度条件下, P1位置的轴向电场强度Ex (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Fig. 4.  Axial electric field Ex at P1 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV).

    图 5  不同峰值电流密度条件下, P2位置的径向电场强度Ey (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, 点线: 仅考虑背散射电子, E0 = 5 keV)

    Fig. 5.  Radial electric field Ey at P2 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons; dot line: only considering backscattering electrons, E0 = 5 keV).

    图 6  J0 = 5, 100 A/cm2条件下, P2位置的磁感应强度BZ (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Fig. 6.  Magnetic field BZ at P2 for J0 = 5, 100 A/cm2 (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV)

    图 7  不同腔体材料, P1位置的轴向电场强度Ex(J0 = 1 A/cm2, E0 = 5 keV)

    Fig. 7.  Axial electric field Ex at P1 for different materials (J0 = 1 A/cm2, E0 = 5 keV).

    图 8  不同位置(P1, P2, P3)的轴向电场强度Ex (J0 = 1 A/cm2, E0 = 5 keV)

    Fig. 8.  Axial electric field Ex at P1, P2 and P3 (J0 = 1 A/cm2, E0 = 5 keV).

    图 9  不同峰值电流密度下, P1位置的轴向电场强度Ex (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Fig. 9.  Axial electric field Ex at P1 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV).

    图 10  E0 = 5 keV与E0 = 50 keV条件下, P1位置的轴向电场强度Ex(J0 = 1 A/cm2)

    Fig. 10.  Axial electric field Ex at P1 for E0 = 5 keV and E0 = 50 keV (J0 = 1 A/cm2).

    Baidu
  • [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋 译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社) 第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Woods A J, Wenaas E P 1976 IEEE Trans. Nucl. Sci. 23 1903Google Scholar

    [6]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [7]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [8]

    王泰春, 王玉芝 1986 计算物理 3 86

    Wang T C, Wang Y Z 1986 Chinese J. Comput. Phys. 3 86

    [9]

    Li J X, Cheng Y H, Wu W, Zhou H 2008 Proceedings of the 14th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology Urumqi, China, July 15−20, 2008 p735

    [10]

    Holland R 1995 IEEE Trans. Electromagn. Compat. 37 433Google Scholar

    [11]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2−7, 2014 p00051

    [12]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [13]

    孙会芳, 张芳, 董志伟 2016 计算物理 33 434Google Scholar

    Sun H F, Zhang F, Dong Z W 2016 Chinese J. Comput. Phys. 33 434Google Scholar

    [14]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [15]

    Chen J H, Chao Z, Deng J H, Li Z D Z 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [16]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [17]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [18]

    Wenaas E P, Woods A J 1976 IEEE Trans. Nucl. Sci. 23 1921Google Scholar

    [19]

    周俊 2009 博士学位论文(成都: 电子科技大学)

    Zhou J 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [20]

    Reimer L 2000 Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (New York: Springer) p4

    [21]

    谢爱根, 裴元吉, 王荣, 孙红兵 2005 高能物理与核物理 5 530

    Xie A G, Pei Y J, Wang R, Sun H B 2005 High Energy Phys. Nuclear Phys. 5 530

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [23]

    Valfells Á, Singh A, Kolander M J, Granatstein V L 2002 IEEE Trans. Plasma Sci. 30 1271Google Scholar

    [24]

    Furman M A, Pivi M T F 2002 Phys. Rev. Spec. Top. - Accel. Beams 5 124404Google Scholar

    [25]

    Sternglass E J 1954 Phys. Rev. 95 345Google Scholar

    [26]

    Joy D C 1995 Scanning 17 270Google Scholar

    [27]

    Hussain A, Yang L H, Mao S F, Da B, Tőkési K, Ding Z H 2021 Nucl. Mater. Energy 26 100862Google Scholar

    [28]

    刘腊群, 刘大刚, 王学琼, 彭凯, 杨超 2012 强激光与粒子束 24 1980Google Scholar

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980Google Scholar

    [29]

    Staub P F 1994 J. Phys. D Appl. Phys. 27 1533Google Scholar

    [30]

    Matsukawa T, Shimizu R, Hashimoto H 1974 J. Phys. D Appl. Phys. 7 695Google Scholar

    [31]

    陈剑楠, 陶应龙, 陈再高, 王玥 2018 现代应用物理 9 040501Google Scholar

    Chen J N, Tao Y L, Chen Z G, Wang Y 2018 Modern Appl. Phys. 9 040501Google Scholar

    [32]

    郭景海, 周辉, 吴伟, 程引会, 李进玺, 马良, 赵墨 2016 核电子学与探测技术 36 512Google Scholar

    Guo J H, Zhou H, Wu W, Cheng Y H, Li J X, Ma L, Zhao M 2016 Nuclear Electronics and Detection Techol. 36 512Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响.  , 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用.  , 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 稀薄空气中圆柱腔体内系统电磁脉冲的混合模拟.  , 2022, 71(5): 055201. doi: 10.7498/aps.71.20211524
    [4] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 稀薄空气中圆柱腔体内系统电磁脉冲的混合模拟研究.  , 2021, (): . doi: 10.7498/aps.70.20211524
    [6] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制.  , 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [7] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [8] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化.  , 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [9] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究.  , 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [10] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟.  , 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [11] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算.  , 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [12] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型.  , 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [13] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型.  , 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [14] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型.  , 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [15] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟.  , 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [16] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究.  , 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [17] 李晓苇, 李新政, 江晓利, 于 威, 田晓东, 杨少鹏, 傅广生. S+Au增感中心的电子陷阱效应对光电子行为的影响.  , 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [18] 董国义, 李晓苇, 韦志仁, 杨少鹏, 韩 理, 傅广生. 微波吸收法研究Mn,Cu掺杂对ZnS:Mn,Cu光生载流子复合过程的影响.  , 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [19] 卢其亮, 赵国庆, 周筑颖. 近程碰撞对He+离子诱发背向电子发射贡献比例的计算.  , 2003, 52(5): 1278-1281. doi: 10.7498/aps.52.1278
    [20] 杨少鹏, 傅广生, 李晓苇, 耿爱从, 韩 理. 立方体AgCl微晶中[Fe(CN)6]4-引入的浅电子陷阱阱深与俘获截面的动力学模拟.  , 2003, 52(11): 2649-2654. doi: 10.7498/aps.52.2649
计量
  • 文章访问数:  4997
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map