-
In order to find a rapid and accurate numerical method to compute the multipactor threshold in microwave device, three enhanced Monte-Carlo (MC) methods are proposed which are single particle-multiple collision MC, multiple particle-single collision MC and multiple particle-multiple collision MC method. The three MC methods all give the random nature of the secondary electrons, including their initial energies, phases and angles. And in all of the methods, the electron trajectory is computed with Runge-Kutta method and the secondary electron yield (SEY) per collision is computed with Furman model. The effective SEY is taken as the criterion to judge whether multipactor occurs, the definition of which is a little different from those of the three MC methods. As a verification, the multipactor in a parallel plate transmission line is investigated with the presented MC methods and the traditional MC method. The numerical results of the four MC methods are compared with the results of the statistical theory. It is demonstrated that the single particle-multiple collision MC method has the smallest error and the best stability.
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Electron. Technol. 1 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 1 38]
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[7] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[8] Burt G, Carter R G, Dexter A C, Hall B, Smith J D A 2009 Proc. SRF 09 321
[9] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[10] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[11] Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[12] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[13] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[14] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[15] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润 2011 60 084103]
[16] Li X Y, Chen C M 2008 Math. Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用 28 62]
-
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Electron. Technol. 1 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 1 38]
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[7] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[8] Burt G, Carter R G, Dexter A C, Hall B, Smith J D A 2009 Proc. SRF 09 321
[9] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[10] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[11] Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[12] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[13] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[14] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[15] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润 2011 60 084103]
[16] Li X Y, Chen C M 2008 Math. Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用 28 62]
计量
- 文章访问数: 6377
- PDF下载量: 444
- 被引次数: 0