-
The multicarrier multipactor is a phenomenon that can be observed in vacuum environment due to the effect of secondary electron emission. Accurate analysis of the threshold of multicarrier multipactor is crucial for the long-term reliability of high-power spaceborne microwave system, and therefore it has been attracting more and more interests in fields of high-power microwave community, plasma physics and aerospace engineering. Recently, a new mechanism of multicarrier multipactor, termed long-term multipactor, induced by sustained accumulation of residual electrons between successive envelope periods of multicarrier signals has received much attention. Comparing with the single-event multipactor induced by the electron accumulation inside a single envelop period, researchers tend to believe that the threshold of the long-term discharge should be lower. However, recent experimental results show an opposite conclusion. In this work, in order to investigate the contradiction between the experimental and theoretical studies on the thresholds of multicarrier multipactors, particle simulations are used to simulate the evolution process of the multicarrier multipactor under the same conditions and judgement criterion. The behavioral characteristics and occurrence condition for multicarrier multipactors, especially the single-event ones, are analyzed based on a power scanning analysis, and the conflicting results are effectively explained. Our simulations show that if the evolution process of a multipactor can be divided into three phases, i.e., establishment phase, critical phase and saturation phase, the experimental reflection coefficient can be corresponding to the reflection coefficient simulated in the critical phase. The simulation results indicate that the type of the multipactor discharge would depend on the configuration of multicarrier signals. For multicarrier signals with relatively narrow bandwidths, single-event multicarrier multipactors could occur in the first place at a lower threshold power. Therefore, the threshold of a long-term discharge is not necessarily lower than that of a single-event one. This conclusion is important for estimating and suppressing the multicarrier multipactors in the design of high-power spaceborne microwave components.
-
Keywords:
- multicarrier /
- multipactor threshold /
- microwave components /
- particle simulation
[1] Farnsworth P T 1934 Franklin Inst. 218 411
[2] Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172
[3] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[4] Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)
[5] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[6] Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505
[7] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[8] Hatch A J, Williams H B 1958 Phys. Rev. 112 681
[9] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)
[10] Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112
[11] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[12] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Technol. 60 2093
[13] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63220205]
[14] Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 65 047901]
[15] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Wiley-IEEE Press)
[16] Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)
[17] Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830
[18] Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, USA June 12-17, 2005 p1055
-
[1] Farnsworth P T 1934 Franklin Inst. 218 411
[2] Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172
[3] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[4] Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)
[5] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[6] Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505
[7] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[8] Hatch A J, Williams H B 1958 Phys. Rev. 112 681
[9] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)
[10] Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112
[11] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[12] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Technol. 60 2093
[13] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63220205]
[14] Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 65 047901]
[15] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Wiley-IEEE Press)
[16] Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)
[17] Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830
[18] Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, USA June 12-17, 2005 p1055
Catalog
Metrics
- Abstract views: 5724
- PDF Downloads: 152
- Cited By: 0