搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体中高能电子各向异性压强的粒子模拟

王宬朕 董全力 刘苹 吴奕莹 盛政明 张杰

引用本文:
Citation:

激光等离子体中高能电子各向异性压强的粒子模拟

王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰

Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction

Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie
PDF
导出引用
  • 直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束“点火”及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.
    Direct-drive inertial confinement fusion (ICF) requires a symmetric compression of the fuel target to achieve physical conditions for the ignition. The fast ignition scheme reduces the symmetry requirements for the target compression and the necessary driving energy, but symmetrically compressed target will certainly help improve the efficiency of the nuclear fuel burning. In this paper, with the particle-in-cell (PIC) simulation method, characteristics of the anisotropic pressure tensor of hot electrons are reported for the ultra intense laser pulse interaction with over dense plasmas, which mimics the scenario of the last stage when hot electrons are utilized to ignite the compressed fuel core in the ICF fast ignition scheme. A large number of hot electrons can stimulate pressure oscillations in the high density plasma. As the component parallel to the electron velocity dominates the pressure tensor, the electron density distribution perturbation propagates rapidly in this direction. In order to keep those hot electrons in the high density fuel plasma core for a period long enough for them to deposit energy and momentum, a magnetic field perpendicular to the electron velocity is used. The PIC simulation results indicate that the hot electrons can be trapped by the magnetic field, and the components of the anisotropic pressure tensor related to the parallel direction are significantly affected, thereby producing a high peak near the incidence surface. Since it is a relatively long process for the energy transfer from electrons to fuel ions and the nuclear interaction to be completed, the fluid effects take their roles in the fuel target evolution. The anisotropic electron pressure will deteriorate the fuel core symmetry, reduce the density, and achieve a lower efficiency of nuclear fuel burning and a lower gain of nuclear reaction than expected. The effects of the hot electron anisotropic pressure tensor in the fast ignition scheme should be considered as a factor in experiments where the nuclear reaction gain is measured to be much lower than the theoretical prediction.
      通信作者: 董全力, qldong@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674146,11274152)资助的课题.
      Corresponding author: Dong Quan-Li, qldong@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674146, 11274152).
    [1]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Drake R P 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (1st Ed.) (Berlin: Springer Science & Business Media) pp392-419

    [4]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P, Sangster T C, Seka W, Short R W, Skupsky S, Smalyuk V A, Soures J M, Stoeckl C, Yaakobi B, Shvarts D, Frenje J A, Li C K, Petrasso R D, Séguin F H 2008 Phys. Plasmas 15 055503

    [5]

    Rosen M D 1999 Phys. Plasmas 6 1690

    [6]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D 1998 Phys. Plasmas 5 1901

    [7]

    Sharp D H 1984 Physica D 12 3IN111

    [8]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [9]

    Wesson J, Campbell D J 2011 Tokamaks (4th Ed.) (Oxford: Oxford University Press) pp356-358

    [10]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Delettrez JA, McKenty P W, Sangster T C, Keck R L, Soures J M, Marshall F J, Meyerhofer D D, Goncharov V N, Knauer J P, Radha P B, Regan S P, Seka W 2004 Phys. Rev. Lett. 92 205001

    [11]

    Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H, Mima K 1997 Phys. Rev. Lett. 78 250

    [12]

    Honda M, Mima K, Shigemori K, Nakai M, Azechi H, Nishiguchi A 1999 Fusion Eng. Des. 44 205

    [13]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32

    [14]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [15]

    Gu J F, Dai Z S, Fan Z F, Zou S Y, Ye W H, Pei W B, Zhu S P 2014 Phys. Plasmas 21 012704

    [16]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626

    [17]

    Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 94101 (in Chinese) [吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉 2014 63 94101]

    [18]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [19]

    Gu Y Q, Cai D F, Zheng Z J, Yang X D, Zhou W M, Jiao C Y, Chen H, Wen T S, Chunyu S T 2005 Acta Phys. Sin. 54 186 (in Chinese) [谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈豪, 温天舒, 淳于书泰 2005 54 186]

    [20]

    Wu S Z, Zhang H, Zhou C T, Wu J F, Cai H B, Cao L H, He M Q, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 77 (in Chinese) [吴思忠, 张华, 周沧涛, 吴俊峰, 蔡洪波, 曹莉华, 何民卿, 朱少平, 贺贤土 2015 强激光与粒子束 27 77]

    [21]

    Cai H B, Zhou C T, Jia Q, Wu S Z, He M Q, Cao L H, Chen M, Zhang H, Liu J, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 27032001 (in Chinese) [蔡洪波, 周沧涛, 贾青, 吴思忠, 何民卿, 曹莉华, 陈默, 张华, 刘杰, 朱少平, 贺贤土 2015 强激光与粒子束 27 27032001]

    [22]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [23]

    Cassak P A, Baylor R N, Fermo R L, Beidler M T, Shay M A, Swisdak M, Drake J F, Karimabadi H 2015 Phys. Plasmas 22 020705

    [24]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001

    [25]

    Divin A, Markidis S, Lapenta G, Semenov V S, Erkaev N V, Biernat H K 2010 Phys. Plasmas 17 122102

    [26]

    Hoshino M 2005 J. Geophys. Res. 110 A10215

    [27]

    Liu C, Fox W, Bhattacharjee A 2015 Phys. Plasmas 22 053302

    [28]

    Wan W G, Lapenta G 2008 Phys. Rev. Lett. 101 015001

    [29]

    Yin L, Winske D, Gary S P, Birn J 2001 J. Geophys. Res. 106 10761

    [30]

    Wang L, Hakim A H, Bhattacharjee A, Germaschewski K 2015 Phys. Plasmas 22 012108

    [31]

    Mottez F 2004 Ann. Geophys. 22 3033

    [32]

    Heinz H, Paul W, Binder K 2005 Phys. Rev. E 72 066704

    [33]

    Cai H S, Li D 2009 Phys. Plasmas 16 052107

    [34]

    Le A, Daughton W, Karimabadi H, Egedal J 2016 Phys. Plasmas 23 032114

    [35]

    Yin L, Winske D 2003 Phys. Plasmas 10 1595

  • [1]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Drake R P 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (1st Ed.) (Berlin: Springer Science & Business Media) pp392-419

    [4]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P, Sangster T C, Seka W, Short R W, Skupsky S, Smalyuk V A, Soures J M, Stoeckl C, Yaakobi B, Shvarts D, Frenje J A, Li C K, Petrasso R D, Séguin F H 2008 Phys. Plasmas 15 055503

    [5]

    Rosen M D 1999 Phys. Plasmas 6 1690

    [6]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D 1998 Phys. Plasmas 5 1901

    [7]

    Sharp D H 1984 Physica D 12 3IN111

    [8]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [9]

    Wesson J, Campbell D J 2011 Tokamaks (4th Ed.) (Oxford: Oxford University Press) pp356-358

    [10]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Delettrez JA, McKenty P W, Sangster T C, Keck R L, Soures J M, Marshall F J, Meyerhofer D D, Goncharov V N, Knauer J P, Radha P B, Regan S P, Seka W 2004 Phys. Rev. Lett. 92 205001

    [11]

    Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H, Mima K 1997 Phys. Rev. Lett. 78 250

    [12]

    Honda M, Mima K, Shigemori K, Nakai M, Azechi H, Nishiguchi A 1999 Fusion Eng. Des. 44 205

    [13]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32

    [14]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [15]

    Gu J F, Dai Z S, Fan Z F, Zou S Y, Ye W H, Pei W B, Zhu S P 2014 Phys. Plasmas 21 012704

    [16]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626

    [17]

    Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 94101 (in Chinese) [吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉 2014 63 94101]

    [18]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [19]

    Gu Y Q, Cai D F, Zheng Z J, Yang X D, Zhou W M, Jiao C Y, Chen H, Wen T S, Chunyu S T 2005 Acta Phys. Sin. 54 186 (in Chinese) [谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈豪, 温天舒, 淳于书泰 2005 54 186]

    [20]

    Wu S Z, Zhang H, Zhou C T, Wu J F, Cai H B, Cao L H, He M Q, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 77 (in Chinese) [吴思忠, 张华, 周沧涛, 吴俊峰, 蔡洪波, 曹莉华, 何民卿, 朱少平, 贺贤土 2015 强激光与粒子束 27 77]

    [21]

    Cai H B, Zhou C T, Jia Q, Wu S Z, He M Q, Cao L H, Chen M, Zhang H, Liu J, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 27032001 (in Chinese) [蔡洪波, 周沧涛, 贾青, 吴思忠, 何民卿, 曹莉华, 陈默, 张华, 刘杰, 朱少平, 贺贤土 2015 强激光与粒子束 27 27032001]

    [22]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [23]

    Cassak P A, Baylor R N, Fermo R L, Beidler M T, Shay M A, Swisdak M, Drake J F, Karimabadi H 2015 Phys. Plasmas 22 020705

    [24]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001

    [25]

    Divin A, Markidis S, Lapenta G, Semenov V S, Erkaev N V, Biernat H K 2010 Phys. Plasmas 17 122102

    [26]

    Hoshino M 2005 J. Geophys. Res. 110 A10215

    [27]

    Liu C, Fox W, Bhattacharjee A 2015 Phys. Plasmas 22 053302

    [28]

    Wan W G, Lapenta G 2008 Phys. Rev. Lett. 101 015001

    [29]

    Yin L, Winske D, Gary S P, Birn J 2001 J. Geophys. Res. 106 10761

    [30]

    Wang L, Hakim A H, Bhattacharjee A, Germaschewski K 2015 Phys. Plasmas 22 012108

    [31]

    Mottez F 2004 Ann. Geophys. 22 3033

    [32]

    Heinz H, Paul W, Binder K 2005 Phys. Rev. E 72 066704

    [33]

    Cai H S, Li D 2009 Phys. Plasmas 16 052107

    [34]

    Le A, Daughton W, Karimabadi H, Egedal J 2016 Phys. Plasmas 23 032114

    [35]

    Yin L, Winske D 2003 Phys. Plasmas 10 1595

  • [1] 王美乔, 徐泽鲲, 吴福源, 张杰. 等容预压缩等离子体中的快点火热斑形成与燃烧波传播.  , 2024, 73(5): 055204. doi: 10.7498/aps.73.20231474
    [2] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰. 超音速高密度喷流对撞过程中的高效能量转移.  , 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [3] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析.  , 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [4] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟.  , 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [5] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [6] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [7] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟.  , 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [8] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [9] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计.  , 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [10] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [11] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟.  , 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [12] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响.  , 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [13] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究.  , 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [14] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [15] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响.  , 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [17] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [18] 郑春阳, 刘占军, 李纪伟, 张爱清, 裴文兵. 无碰撞等离子体中电子束流不稳定性的时空演化研究.  , 2005, 54(5): 2138-2146. doi: 10.7498/aps.54.2138
    [19] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟.  , 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  5772
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-04-23
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map