-
Multicarrier multipactor, which is found in the wideband high power vacuum microwave passive components, potentially threatens the reliability of microwave systems in space and accelerator applications. The global threshold analysis of multicarrier multipactor is of vital importance for the risk assessment of high power vacuum devices. Till now, however, no effective solutions for the global threshold analysis of multicarrier multipactor have been proposed for practical microwave components with complex structures. In this paper, an efficient approach capable of evaluating the global threshold of multicarrier multipactor based on detectable level of multipactor test system is presented. Electromagnetic characteristics of the microwave device are theoretically related to the electron density by equivalently considering the distribution zone of electrons as a plasma medium. In order to obtain the global threshold using the optimization algorithm, such as the Monte Carlo method, we further propose an efficient approach capable of rapidly computing the fluctuation of number of electrons in the evolving process of a multicarrier multipactor based on the equivalency of half-sine-like segments for the acceleration of electrons. Analytical results comply with the tested thresholds. Different from the conventional equivalent power using the empirical rule, the proposed approach is based on the criterion of critical density of electrons and rapidly computing the fluctuation of number of electrons, providing an efficient method for the accurate global threshold analysis of multicarrier multipactor.
-
Keywords:
- multicarrier multipactor /
- microwave components /
- particle-in-cell simulation /
- critical density
[1] Farnsworth P T 1934 Franklin Inst. 218 411
[2] Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172
[3] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[4] Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)
[5] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[6] Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505
[7] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[8] Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476
[9] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402
[10] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[11] Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]
[12] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)
[13] Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112
[14] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[15] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093
[16] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63 220205]
[17] Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85
[18] Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375
[19] Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)
[20] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90
[21] Lisovskii V A 1998 Russian Phys. J. 41 394
[22] Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830
[23] Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404
[24] Bouchaud J, Georges A 1990 Phys. Reports 195 127
[25] Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044
[26] Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066
[27] Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253
[28] Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)
[29] Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381
[30] Riyopoulos S 1997 Phys. Plasmas 4 1448
[31] Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)
[32] Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)
-
[1] Farnsworth P T 1934 Franklin Inst. 218 411
[2] Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172
[3] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[4] Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)
[5] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[6] Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505
[7] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[8] Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476
[9] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402
[10] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[11] Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]
[12] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)
[13] Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112
[14] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[15] Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093
[16] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63 220205]
[17] Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85
[18] Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375
[19] Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)
[20] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90
[21] Lisovskii V A 1998 Russian Phys. J. 41 394
[22] Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830
[23] Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404
[24] Bouchaud J, Georges A 1990 Phys. Reports 195 127
[25] Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044
[26] Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066
[27] Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253
[28] Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)
[29] Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381
[30] Riyopoulos S 1997 Phys. Plasmas 4 1448
[31] Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)
[32] Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)
Catalog
Metrics
- Abstract views: 6192
- PDF Downloads: 193
- Cited By: 0