搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟

陈兆权 殷志祥 陈明功 刘明海 徐公林 胡业林 夏广庆 宋晓 贾晓芬 胡希伟

引用本文:
Citation:

负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟

陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟

Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer

Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei
PDF
导出引用
  • 由于表面电磁波沿着介质-等离子体分界面传播,而很难通过对传统的表面波等离子体(SWP)源施加负偏压实现金属材料溅射,因此限制了SWP源的使用范围. 近期,一种基于负偏压离子鞘导波的SWP源克服了这个问题,且其加热机理是表面等离激元(SPP)的局域增强电场激励气体放电产生. 但是该SWP源放电过程的影响因素并未研究清晰,导致其最佳放电条件没有获得. 本文采用粒子(PIC)和蒙特卡罗碰撞(MCC)相结合的模拟方法,探讨了负偏压离子鞘及气体压强影响SWP电离发展过程的放电机理. 模拟结果表明,负偏压和气体压强的大小影响了离子鞘的厚度、SPP的激励和波模的时空转化,从而表现出不同的放电形貌. 进一步分析确定,在负偏压200 V左右和气体压强40 Pa附近,该SWP源的放电效果最佳.
    Due to surface electromagnetic waves propagating along the dielectric-plasma interface, the application of surface-wave plasma (SWP) is limited in view of the fact that it is very difficult to realize metal sputtering by using negative-biased voltage in traditional SWP sources. Recently, this problem is overcome by a type of SWP source based on the guided wave in ion sheath layer driven by negative-biased voltage. And the plasma heating mechanism is originated from gas discharges excited by the local-enhanced electric field of surface plasmon polariton (SPP). However, the best discharge condition is not obtained because the influence factors affecting the discharge process studied is not clear. In this paper, the discharge mechanism of SWP ionization process influenced by gas pressure and negative-biased voltage along the ion sheath layer is investigated. The simulation method is by means of combining particle-in-cell (PIC) with Monte Carlo collision (MCC). Simulated results suggest that the values of negative-biased voltage and gas pressure can influence the thickness of ion sheath layer, the excitation of SPP, and the spatio-temporal conversion of wave mode, which further induces the different discharge performances. Moreover, the discussed analysis states that a better discharge performance can be obtained when approximately a negative-biased voltage of -200 V and a gas pressure of 40 Pa applied.
    • 基金项目: 国家自然科学基金(批准号:11105002)、工业装备结构分析国家重点实验室(大连理工大学)开放课题基金(批准号:GZ1215)、安徽高校省级自然科学研究项目(批准号:KJ2013A106)、安徽省自然科学基金(批准号:1408085QA16,1408085ME101)和强电磁工程与新技术国家重点实验室(华中科技大学)开放课题基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11105002), the Open-End Fund of State Key Laboratory of Structural Analysis for Industrial Equipment, China (Grant No.GZ1215), the Natural Science Foundation for University in Anhui Province, China (Grant No. KJ2013A106), the Natural Science Foundation in Anhui Provice (Grant Nos. 1408085QA16, 1408085ME101), and the Open-End Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology).
    [1]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese)[董太源, 叶坤涛, 刘维清 2012 61 145202]

    [2]

    Hans Schltera, and Antonia Shivarova 2007 Physics Reports 443 121

    [3]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 55 5905]

    [4]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese)[朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202]

    [5]

    Zhou Q, Dong Z 2013 Acta. Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]

    [6]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [7]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [8]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [11]

    Chang X, Kunii K, Liang R, Nagatsu M 2013 J. Appl. Phys. 114 183302

    [12]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [13]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [14]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [15]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [16]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X 2009 J. Appl. Phys. 106 063304

    [17]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [18]

    Kousaka H, Xu J Q, Umehara N 2005 Jpn. J. Appl. Phys. 44 1052

    [19]

    Kousaka H, Umehara N 2006 Vacuum 80 806

    [20]

    Kousaka H, Xu J Q, Umehara N 2006 Vacuum 80 1154

    [21]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [22]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [23]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [24]

    Chen Z, Xia G, Liu M, Zheng X, Hu Y, Li P, Xu G, Hong L, Sheng H, Hu X W 2013 Acta Phys. Sin. 62 195204 (in Chinese)[陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 62 195204]

    [25]

    Zhu L, Chen Z, Yin Z, Wang G, Xia G, Hu Y, Zheng X, Zhou M, Chen M, Liu M 2014 Chin. Phys. Lett. 31 035203

    [26]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [27]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [28]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [29]

    Kousaka H, Ono K 2003 Plasma Sources Sci. Technol. 12 273

    [30]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese)[杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]

    [31]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

  • [1]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese)[董太源, 叶坤涛, 刘维清 2012 61 145202]

    [2]

    Hans Schltera, and Antonia Shivarova 2007 Physics Reports 443 121

    [3]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 55 5905]

    [4]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese)[朱国强, Jean-Pierre Boeuf, 李进贤 2012 61 235202]

    [5]

    Zhou Q, Dong Z 2013 Acta. Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]

    [6]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [7]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [8]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [11]

    Chang X, Kunii K, Liang R, Nagatsu M 2013 J. Appl. Phys. 114 183302

    [12]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [13]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [14]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [15]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [16]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X 2009 J. Appl. Phys. 106 063304

    [17]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [18]

    Kousaka H, Xu J Q, Umehara N 2005 Jpn. J. Appl. Phys. 44 1052

    [19]

    Kousaka H, Umehara N 2006 Vacuum 80 806

    [20]

    Kousaka H, Xu J Q, Umehara N 2006 Vacuum 80 1154

    [21]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [22]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [23]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [24]

    Chen Z, Xia G, Liu M, Zheng X, Hu Y, Li P, Xu G, Hong L, Sheng H, Hu X W 2013 Acta Phys. Sin. 62 195204 (in Chinese)[陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 62 195204]

    [25]

    Zhu L, Chen Z, Yin Z, Wang G, Xia G, Hu Y, Zheng X, Zhou M, Chen M, Liu M 2014 Chin. Phys. Lett. 31 035203

    [26]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [27]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [28]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [29]

    Kousaka H, Ono K 2003 Plasma Sources Sci. Technol. 12 273

    [30]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese)[杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701]

    [31]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

  • [1] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [4] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法.  , 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [5] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [8] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展.  , 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [10] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用.  , 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [11] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟.  , 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [13] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [14] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [15] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟.  , 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [16] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [17] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [18] 刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李 斌, 但 敏. 大面积表面波等离子体的特性研究.  , 2006, 55(11): 5905-5908. doi: 10.7498/aps.55.5905
    [19] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  6515
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-08
  • 修回日期:  2013-12-26
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map