Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A controllable circular ring acoustic focused field

Zheng Li Guo Jian-Zhong

Citation:

A controllable circular ring acoustic focused field

Zheng Li, Guo Jian-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on Huygens principle about the aspect of phased array, this paper presents a structure of cylindrical acoustic transducer consisting of circular ring piezoelectric transducer elements in radial vibration mode, which can be used to achieve the ultrasonic nondestructive test for the cylindrical scanning acoustic field in three-dimensional space. By analyzing the acoustic field of a single ring line source and a single element, the sound field distribution of the phased array is obtained for constructing circular ring acoustic focused field. By means of the phased array incentive mode, the phase difference of driving signals is generated and forms a regular time delay; with the accomplishment of sound field scanning in cylindrical three-dimensional space, the circular ring acoustic focused field can be controlled in real time.Theoretical analysis and finite element simulation results demonstrate that the size of the circular ring acoustic focused field can be controlled by the numbers of the excited array elements, which are 4, 8, 16 and 32 respectively in our work. We find that with more array element numbers, the circular ring acoustic field has better focused features. The radius size of the circular ring acoustic focused field can be controlled by the different locations of the focus positions which are 30 and 50 mm respectively in our work. And we find that as the distance between the focus positions and the center of piezoelectric wafer becomes longer, the radius of the circular ring acoustic focused field becomes bigger, and the position of the focus is equivalent to the radius of the circular ring acoustic focused field. The movement along the axial direction of circular ring acoustic focused field can be controlled by the angle of deflection, which are set as 0, 10 respectively in our work. And we find that the circular ring acoustic focused field is deflected in a corresponding deflection angle along the Z-axis, and the moving distance is FZ = F/sin . With the theoretical analysis and the experimental simulation, it can be shown that the structure of cylindrical acoustic transducer array presented in this paper could create an adjustable circular ring acoustic focused field and can potentially provide an acoustic field scan method in detection ultrasound, medical ultrasound and other areas of a cylindrical space.
      Corresponding author: Guo Jian-Zhong, guojz@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274217, 11574192) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China, Shaanxi Normal University (Grant No. GK20131009).
    [1]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [2]

    Shih J L, Wu K T, Jen C K, Chiu C H, Tzeng J C, Liaw J W 2013 Sensors 13 975

    [3]

    Humeida Y, Wilcox P D, Todd M D, Drinkwater B W 2014 NDT E. Int. 68 43

    [4]

    Ennaceur C, Mudge P, Bridge B, Kayous M, Gan T H 2007 Insight 49 217

    [5]

    Lin S C S, Tittmann B R, Huang T J 2012 J. Appl. Phys. 111 123510

    [6]

    Celli P, Gonella S 2014 J. Appl. Phys. 115 103502

    [7]

    Park C M, Lee S H 2015 J. Appl. Phys. 117 034904

    [8]

    Alagoz S, Alagoz B B, Sahin A, Nur S 2015 Chin. Phys. B 24 046201

    [9]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [10]

    Azar L, Shi Y, Wooh S C 2000 NDTE Int. 33 189

    [11]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Syst. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [12]

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613 (in Chinese) [张碧星,王文龙 2008 57 3613]

    [13]

    Ellens N, Hynynen K 2014 Med. Phys. 41 072902

    [14]

    Hu D, Wang Q, Xiao K, Ma Y H 2012 Procedia Eng. 43 459

    [15]

    Wooh S C, Shi Y J 1999 Wave Mot. 29 245

    [16]

    Wooh S C, Shi Y J 1999 J. Nondestr. Eval. 18 39

    [17]

    Wooh S C, Shi Y J 1998 J. Ultrasonics 36 737

    [18]

    Zhang B X, Shi F F, Wu X M, Gong J J, Zhang C G 2010 Chin. Phys. Lett. 27 094301

    [19]

    Xu F, Lu M Z, Wan M X, Fang F 2010 Acta Phys. Sin. 59 1349 (in Chinese) [徐丰,陆明珠,万明习,方飞 2010 59 1349]

    [20]

    Sun F, Zeng Z M, Wang X Y, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301 (in Chinese) [孙芳,曾周末,王晓媛,靳世久,詹湘琳 2011 60 094301]

    [21]

    Yu L L, Shou W D, Hui C 2011 Chin. Phys. Lett. 28 104302

    [22]

    Yu L L, Shou W D, Hui C 2012 Commun. Theor. Phys. 57 285

    [23]

    Smith M L, Roddewig M R, Strovink K M, Scales J A 2013 Acoust. Today 9 22

    [24]

    He Z Y 2014 Bio.-Med. Mater. Eng. 24 1201

    [25]

    Satyanarayan L, Sridhar C, Krishnamurthy C V, Balasubramaniam K 2007 Int. J. Press Vessels Piping 84 716

    [26]

    Tayel M, Ismail N, Talaat A 2006 National Radio Science Conference, Proceedings of the 23rd National Conference Menoufiya, Egypt, March 14-16, 2006 p1

    [27]

    Lin S Y, Sang Y J, Tian H 2007 Acta Acust. 32 310 (in Chinese) [林书玉, 桑永杰, 田华 2007 声学学报 32 310]

    [28]

    Liu S Q, Lin S Y 2009 Sensor Actuat. A: Phys. 155 175

    [29]

    Neild A, Hutchins D A, Robertson T J, Davis L A J, Billson D R 2005 Ultrasonics 43 183

  • [1]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [2]

    Shih J L, Wu K T, Jen C K, Chiu C H, Tzeng J C, Liaw J W 2013 Sensors 13 975

    [3]

    Humeida Y, Wilcox P D, Todd M D, Drinkwater B W 2014 NDT E. Int. 68 43

    [4]

    Ennaceur C, Mudge P, Bridge B, Kayous M, Gan T H 2007 Insight 49 217

    [5]

    Lin S C S, Tittmann B R, Huang T J 2012 J. Appl. Phys. 111 123510

    [6]

    Celli P, Gonella S 2014 J. Appl. Phys. 115 103502

    [7]

    Park C M, Lee S H 2015 J. Appl. Phys. 117 034904

    [8]

    Alagoz S, Alagoz B B, Sahin A, Nur S 2015 Chin. Phys. B 24 046201

    [9]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [10]

    Azar L, Shi Y, Wooh S C 2000 NDTE Int. 33 189

    [11]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Syst. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [12]

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613 (in Chinese) [张碧星,王文龙 2008 57 3613]

    [13]

    Ellens N, Hynynen K 2014 Med. Phys. 41 072902

    [14]

    Hu D, Wang Q, Xiao K, Ma Y H 2012 Procedia Eng. 43 459

    [15]

    Wooh S C, Shi Y J 1999 Wave Mot. 29 245

    [16]

    Wooh S C, Shi Y J 1999 J. Nondestr. Eval. 18 39

    [17]

    Wooh S C, Shi Y J 1998 J. Ultrasonics 36 737

    [18]

    Zhang B X, Shi F F, Wu X M, Gong J J, Zhang C G 2010 Chin. Phys. Lett. 27 094301

    [19]

    Xu F, Lu M Z, Wan M X, Fang F 2010 Acta Phys. Sin. 59 1349 (in Chinese) [徐丰,陆明珠,万明习,方飞 2010 59 1349]

    [20]

    Sun F, Zeng Z M, Wang X Y, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301 (in Chinese) [孙芳,曾周末,王晓媛,靳世久,詹湘琳 2011 60 094301]

    [21]

    Yu L L, Shou W D, Hui C 2011 Chin. Phys. Lett. 28 104302

    [22]

    Yu L L, Shou W D, Hui C 2012 Commun. Theor. Phys. 57 285

    [23]

    Smith M L, Roddewig M R, Strovink K M, Scales J A 2013 Acoust. Today 9 22

    [24]

    He Z Y 2014 Bio.-Med. Mater. Eng. 24 1201

    [25]

    Satyanarayan L, Sridhar C, Krishnamurthy C V, Balasubramaniam K 2007 Int. J. Press Vessels Piping 84 716

    [26]

    Tayel M, Ismail N, Talaat A 2006 National Radio Science Conference, Proceedings of the 23rd National Conference Menoufiya, Egypt, March 14-16, 2006 p1

    [27]

    Lin S Y, Sang Y J, Tian H 2007 Acta Acust. 32 310 (in Chinese) [林书玉, 桑永杰, 田华 2007 声学学报 32 310]

    [28]

    Liu S Q, Lin S Y 2009 Sensor Actuat. A: Phys. 155 175

    [29]

    Neild A, Hutchins D A, Robertson T J, Davis L A J, Billson D R 2005 Ultrasonics 43 183

  • [1] Wang Zi-Hao, Long Ye, Qiu Ke, Xu Jia-Mu, Sun Yan-Ling, Fan Xiu-Hong, Ma Lin, Liao Jia-Li, Kang Yong-Qiang. Optical phased array output beam calibration method based on Adam algorithm. Acta Physica Sinica, 2024, 73(9): 094206. doi: 10.7498/aps.73.20231772
    [2] Li Han-Nan, Peng Yan. Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field. Acta Physica Sinica, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [3] Yan Yi-Zhu, Ding Shuai, Han Xu, Wang Bing-Zhong. Channel processing-based time-reversal method for multi-target tunable focusing. Acta Physica Sinica, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [4] Wang Ming-Jun, Wang Wan-Rou, Li Yong-Jun. Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field. Acta Physica Sinica, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [5] Yang Hua-Li, Xie Ya-Li, Lu Zeng-Xing, Wang Zhi-Ming, Li Run-Wei. Research progress of flexible magnetic films and devices. Acta Physica Sinica, 2022, 71(9): 097503. doi: 10.7498/aps.71.20212354
    [6] Hu Chang-Hai, Wang Ren, Chen Chuan-Sheng, Wang Bing-Zhong. Array factor analysis for untra-wide-angle scanning performance of planar phased arrays. Acta Physica Sinica, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [7] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] Sun Yan-Ling, Cao Rui, Wang Zi-Hao, Liao Jia-Li, Liu Qi-Xin, Feng Jun-Bo, Wu Bei-Bei. Correlated imaging based on biperiodic light field of optical phased array. Acta Physica Sinica, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [9] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [10] Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing. Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves. Acta Physica Sinica, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [11] Yan Hao-Nan, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Li Tong. Wide-angle scanning linear phased arrays based on wide-beam magneto electric dipole antenna. Acta Physica Sinica, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [12] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [13] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [14] Du Chuang, Jia Da-Gong, Zhang Hong-Xia, Liu Tie-Gen, Zhang Yi-Mo. Polarization characteristic and control of the conical diffracted output field under annular beam. Acta Physica Sinica, 2017, 66(12): 124202. doi: 10.7498/aps.66.124202
    [15] Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping, Qian Jiao. Acoustic focusing by thermoacoustic phased array. Acta Physica Sinica, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [16] Ding Ya-Jun, Qian Sheng-You, Hu Ji-Wen, Zou Xiao. Optimization of phased array ultrasonic field in multi-medium. Acta Physica Sinica, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [17] Zhan Xiang-Lin, Sun Fang, Zeng Zhou-Mo, Wang Xiao-Yuan, Jin Shi-Jiu. Acoustic field characteristics of ultrasonic linear phased array for an interface condition. Acta Physica Sinica, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [18] Xu Feng, Lu Ming-Zhu, Wan Ming-Xi, Fang Fei. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [19] Zhang Bi-Xing, Wang Wen-Long. Reflection and refraction on the fluid-solid interface of acoustic field excited by a concave phased array. Acta Physica Sinica, 2008, 57(6): 3613-3619. doi: 10.7498/aps.57.3613
    [20] Zhang Fu-Li, Zhao Xiao-Peng. Tunable split ring resonator and its effect. Acta Physica Sinica, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
Metrics
  • Abstract views:  7802
  • PDF Downloads:  269
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2015
  • Accepted Date:  20 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map