-
轨道角动量涡旋电磁波可以在物理层面为信息的调制提供新的维度, 这在无线通信和雷达成像领域中拥有很大的应用前景. 将相控阵波束扫描技术应用于涡旋电磁波, 可用于增加涡旋电磁通信的覆盖范围, 也可用于扩大涡旋雷达的探测空域. 首先, 本文讨论了涡旋电磁波束偏转的实现原理, 并给出了实现波束扫描时平面相控阵口径上所需的相位分布公式. 其次, 考虑到相控阵天线在波束扫描以及轨道角动量模式可重构方面的独特优势, 设计并制作了一款阵面规模为8 × 8的平面相控阵, 并在10 GHz频率下实验验证了轨道角动量涡旋电磁波的波束扫描和模式可重构效果. 最后, 本文讨论并分析了涡旋电磁波束偏转后的性能变化. 仿真和实验结果显示, 平面相控阵在大角度波束扫描时会发生方向图畸变的问题. 同时, 本文还研究了涡旋电磁波的模式纯度关于波束偏转角度和模式数的变化情况. 本文的研究结果表明, 使用平面相控阵天线在一定空域内可以有效地实现涡旋电磁波束扫描, 并可为涡旋电磁波通信和涡旋雷达提供参考借鉴.Orbital angular momentum (OAM) vortex electromagnetic waves can provide a new degree of freedom for information modulation at a physical level, which has great prospects of applications in the fields of wireless communication and radar imaging. The application of beam scanning techniques of phased array to OAM vortex electromagnetic wave can increase its communication coverage and expand the detection coverage of vortex radars. Firstly, in this paper, the principle of generating the beam steering vortex electromagnetic beam is discussed and the compensated phase formula for generating beam steering OAM beams is given by planar phased array. Secondly, considering the advantages of phased array antennas in beam scanning and OAM reconfigurability, a planar phased array with 8 × 8 antenna elements at 10 GHz is designed and fabricated. The performances of OAM beam steering and mode reconfigurability are verified. Finally, the performance changes of the deflecting OAM vortex beam at different scanning angles are discussed and analyzed. Simulations and measurements both show that there exist pattern distortion problems when steering angle of OAM beam becomes large. In this paper, the variation of the OAM mode purity is also studied when the scanning angle and the OAM mode number change. The results show that the planar phased array antennas can effectively generate the beam steering OAM vortex beams in a certain angle range. Hence, this paper can provide a reference for the OAM vortex electromagnetic wave communication and the vortex radar in the future.
-
Keywords:
- orbital angular momentum /
- vortex wave /
- beam steering /
- planar phased array
[1] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[2] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[3] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[4] Bu X, Zhang Z, Chen L, Liang X, Tang H, Wang X 2018 IEEE Antennas Wirel. Propag. Lett. 17 764Google Scholar
[5] Liu K, Gao Y, Li X, Cheng Y 2018 AIP Adv. 8 025002Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys Lett. 110 0164102Google Scholar
[7] 吴文兵, 圣宗强, 吴宏伟 2019 68 054102Google Scholar
Wu W B, Sheng Z Q, Wu H W 2019 Acta Phys. Sin. 68 054102Google Scholar
[8] Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 0204102Google Scholar
[9] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Trans. Antennas Propag. 65 688Google Scholar
[10] Lin M, Gao Y, Liu P, Liu J 2017 IEEE Trans. Antennas Propag. 65 3510Google Scholar
[11] Zheng S, . Hui X, Jin X, Chi H, Zhang X 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar
[12] Zhang W, Zheng S, Hui X, Chen Y, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 16 194Google Scholar
[13] Yu Z, Guo N, Fan J 2020 IEEE Antennas Wirel. Propag. Lett. 19 601Google Scholar
[14] 高喜, 唐李光 2021 70 038101Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar
[15] Lü HH, Huang Q L, Yi X J, Hou J Q, Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881Google Scholar
[16] Li F, Chen H, Zhou Y, You J, Panoiu N C, Zhou P, Deng L 2020 IEEE Trans. Microwave Theory Tech. 69 1829Google Scholar
[17] Huang H, Li S 2019 IEEE Antennas Wirel. Propag. Lett. 18 432Google Scholar
[18] Chen G T, JiaoY. C, Zhao G 2018 IEEE Antennas Wirel. Propag. Lett. 18 182Google Scholar
[19] Wen Y, Li G Z, Tian H M, Ran S Guo J 2021 Chin. Phys. B 30 58103Google Scholar
[20] 李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[21] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
[22] Meng X, Chen X, Yang L, Xue W, Zhang A, Sha W E, Cheng Q 2020 Appl. Phys. Lett. 117 243503Google Scholar
[23] 冯加林, 施宏宇, 王远, 张安学, 徐卓 2020 69 135201Google Scholar
Feng J L, Shi H Y, Wang Y, Zhang A X, Xu Z 2020 Acta Phys. Sin. 69 135201Google Scholar
[24] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Antennas Wirel. Propag. Lett. 16 704Google Scholar
[25] Zheng S, Chen Y, Zhang Z, Jin X, Chi H, Zhang X, Chen Z N 2017 IEEE Trans. Antennas Propag. 66 1352Google Scholar
[26] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar
[27] Jack B, Leach J Frankearnold S 2009 New J. Phys 10 6456Google Scholar
[28] Shi Y, Wu Q W, Ming J, 2021 IEEE Access 9 63122Google Scholar
-
-
[1] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[2] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[3] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[4] Bu X, Zhang Z, Chen L, Liang X, Tang H, Wang X 2018 IEEE Antennas Wirel. Propag. Lett. 17 764Google Scholar
[5] Liu K, Gao Y, Li X, Cheng Y 2018 AIP Adv. 8 025002Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys Lett. 110 0164102Google Scholar
[7] 吴文兵, 圣宗强, 吴宏伟 2019 68 054102Google Scholar
Wu W B, Sheng Z Q, Wu H W 2019 Acta Phys. Sin. 68 054102Google Scholar
[8] Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 0204102Google Scholar
[9] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Trans. Antennas Propag. 65 688Google Scholar
[10] Lin M, Gao Y, Liu P, Liu J 2017 IEEE Trans. Antennas Propag. 65 3510Google Scholar
[11] Zheng S, . Hui X, Jin X, Chi H, Zhang X 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar
[12] Zhang W, Zheng S, Hui X, Chen Y, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 16 194Google Scholar
[13] Yu Z, Guo N, Fan J 2020 IEEE Antennas Wirel. Propag. Lett. 19 601Google Scholar
[14] 高喜, 唐李光 2021 70 038101Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar
[15] Lü HH, Huang Q L, Yi X J, Hou J Q, Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881Google Scholar
[16] Li F, Chen H, Zhou Y, You J, Panoiu N C, Zhou P, Deng L 2020 IEEE Trans. Microwave Theory Tech. 69 1829Google Scholar
[17] Huang H, Li S 2019 IEEE Antennas Wirel. Propag. Lett. 18 432Google Scholar
[18] Chen G T, JiaoY. C, Zhao G 2018 IEEE Antennas Wirel. Propag. Lett. 18 182Google Scholar
[19] Wen Y, Li G Z, Tian H M, Ran S Guo J 2021 Chin. Phys. B 30 58103Google Scholar
[20] 李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[21] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
[22] Meng X, Chen X, Yang L, Xue W, Zhang A, Sha W E, Cheng Q 2020 Appl. Phys. Lett. 117 243503Google Scholar
[23] 冯加林, 施宏宇, 王远, 张安学, 徐卓 2020 69 135201Google Scholar
Feng J L, Shi H Y, Wang Y, Zhang A X, Xu Z 2020 Acta Phys. Sin. 69 135201Google Scholar
[24] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Antennas Wirel. Propag. Lett. 16 704Google Scholar
[25] Zheng S, Chen Y, Zhang Z, Jin X, Chi H, Zhang X, Chen Z N 2017 IEEE Trans. Antennas Propag. 66 1352Google Scholar
[26] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar
[27] Jack B, Leach J Frankearnold S 2009 New J. Phys 10 6456Google Scholar
[28] Shi Y, Wu Q W, Ming J, 2021 IEEE Access 9 63122Google Scholar
计量
- 文章访问数: 5927
- PDF下载量: 164
- 被引次数: 0