-
调控磁性材料中的自旋拓扑结构(流量闭合型、涡旋、半子(meron)、斯格明子(skyrmion)等自旋组态)可以改进材料的磁性和电磁性能, 因而引起了学术界的广泛关注. 最近研究表明, 在尺寸效应、界面耦合及其相互作用、外延应变等作用下, 铁电材料中也会出现自发的极性拓扑畴结构, 同时表现出新的铁电相结构和丰富的物理性能. 本文总结了铁电纳米结构、铁电薄膜和铁电超晶格中的极性拓扑畴结构类型及其形成机理, 分析了这些极性拓扑结构与铁电、压电、介电、光电性能之间的关联, 并分别讨论了铁电材料中极性拓扑结构的整体拓扑相变调控和单个极性拓扑结构的外场调控, 最后展望了极性拓扑结构未来的可能研究方向.Spin topologies, including flow-closure, vortex, meron, skyrmion and other spin configurations, are usually found in magnetic materials. The emergence of the topological structures will trigger a number of intriguing functionalities and physical properties. Recent studies have shown that the trival domain structures can be transformed into polar topological domain structures under certain boundary conditions, such as size-confining, interfacial coupling, and epitaxial strain. In this paper, we review the observations of polar topologies and their formation mechanism in ferroelectric nanoparticles, thin films, and superlattice films, and focus on the intriguing properties, including ferroelectric, piezoelectric, dielectric, and photoelectric performances, which arise from the formation of polar topologies. We also review the highlights of recent studies of the manipulations and evolutions of polar topologies under the external field loading in ferroelectric materials. Finally, the future research directions of polar topological structure and potential application directions are proposed.
-
Keywords:
- ferroelectric materials /
- domain /
- polar topologies /
- manipulations
[1] Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119
Google Scholar
[2] Heron J T, Schlom D G, Ramesh R 2014 Appl. Phys. Rev. 1 021303
Google Scholar
[3] Scott J F, Hershkovitz A, Ivry Y, Lu H, Gruverman A, Gregg J M 2017 Appl. Phys. Rev. 4 041104
Google Scholar
[4] Scott J F 2016 Ferroelectrics 503 117
Google Scholar
[5] Scott J F, Gardner J 2018 Mater. Today 21 553
Google Scholar
[6] Das S, Ghosh A, McCarter M R, Hsu S L, Tang Y L, Damodaran A R, Ramesh R, Martin L W 2018 APL Mater. 6 100901
Google Scholar
[7] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203
Google Scholar
[8] Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257
Google Scholar
[9] Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014
Google Scholar
[10] Scott J F 2007 Science 315 954
Google Scholar
[11] Chiu C H, Huang C W, Hsieh Y H, Chen J Y, Chang C F, Chu Y H, Wu W W 2017 Nano Energy 34 103
Google Scholar
[12] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 4601
Google Scholar
[13] Waldrop M M 2016 Nature 530 144
Google Scholar
[14] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152
Google Scholar
[15] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915
Google Scholar
[16] Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
Google Scholar
[17] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S, Fert A 2009 Nat. Nanotechnol. 4 528
Google Scholar
[18] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839
Google Scholar
[19] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
Google Scholar
[20] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283
Google Scholar
[21] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, Parkin S S P 2017 Nature 548 561
Google Scholar
[22] Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737
Google Scholar
[23] Ivry Y, Chu D P, Scott J F, Durkan C 2010 Phys. Rev. Lett. 104 207602
Google Scholar
[24] McGilly L J, Schilling A, Gregg J M 2010 Nano Lett. 10 4200
Google Scholar
[25] McQuaid R G P, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404
Google Scholar
[26] Chang L W, Nagarajan V, Scott J F, Gregg J M 2013 Nano Lett. 13 2553
Google Scholar
[27] McQuaid R G P, Gruverman A, Scott J F, Gregg J M 2014 Nano Lett. 14 4230
Google Scholar
[28] Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127
Google Scholar
[29] Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J 2018 Nat. Nanotechnol. 13 947
Google Scholar
[30] Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403
Google Scholar
[31] Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29
Google Scholar
[32] Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412
Google Scholar
[33] Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557
Google Scholar
[34] Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420
Google Scholar
[35] Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547
Google Scholar
[36] Liu Y, Wang Y J, Zhu Y L, Lei C H, Tang Y L, Li S, Zhang S R, Li J, Ma X L 2017 Nano Lett. 17 7258
Google Scholar
[37] Li S, Zhu Y L, Wang Y J, Tang Y L, Liu Y, Zhang S R, Ma J Y, Ma X L 2017 Appl. Phys. Lett. 111 052901
Google Scholar
[38] Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484
Google Scholar
[39] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198
Google Scholar
[40] Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246
Google Scholar
[41] Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368
Google Scholar
[42] Kittel C 1946 Phys. Rev. 70 965
Google Scholar
[43] Mermin N D 1979 Rev. Mod. Phys. 51 591
Google Scholar
[44] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 8856
Google Scholar
[45] Kamionka T, Martens M, Chou K W, Curcic M, Drews A, Schütz G, Tyliszczak T, Stoll H, Van Waeyenberge B, Meier G 2010 Phys. Rev. Lett. 105 137204
Google Scholar
[46] Kuepper K, Buess M, Raabe J, Quitmann C, Fassbender J 2007 Phys. Rev. Lett. 99 167202
Google Scholar
[47] Krüger B, Drews A, Bolte M, Merkt U, Pfannkuche D, Meier G 2008 J. Appl. Phys. 103 07A501
Google Scholar
[48] Drews A, Krüger B, Meier G, Bohlens S, Bocklage L, Matsuyama T, Bolte M 2009 Appl. Phys. Lett. 94 062504
Google Scholar
[49] Gliga S, Yan M, Hertel R, Schneider C M 2008 Phys. Rev. B 77 060404
Google Scholar
[50] Shigeto K, Okuno T, Mibu K, Shinjo T, Ono T 2002 Appl. Phys. Lett. 80 4190
Google Scholar
[51] Martens M, Kamionka T, Drews A, Krüger B, Meier G 2012 J. Appl. Phys. 112 013917
Google Scholar
[52] Mironov V L, Ermolaeva O L, Gusev S A, Klimov A Y, Rogov V V, Gribkov B A, Udalov O G, Fraerman A A, Marsh R, Checkley C, Shaikhaidarov R, Petrashov V T 2010 Phys. Rev. B 81 094436
Google Scholar
[53] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
Google Scholar
[54] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[55] Du H, Zhao X, Rybakov F N, Borisov A B, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev N S, Zhang Y, Che R, Blügel S, Tian M 2018 Phys. Rev. Lett. 120 197203
Google Scholar
[56] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X, Wang W 2018 Nano Lett. 18 1274
Google Scholar
[57] Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887
Google Scholar
[58] Hong Z, Chen L Q 2018 Acta Mater. 152 155
Google Scholar
[59] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190
Google Scholar
[60] Tian G, Yang W, Chen D, Fan Z, Hou Z, Alexe M, Gao X 2019 National Sci. Rev. 6 684
Google Scholar
[61] Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104
Google Scholar
[62] Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601
Google Scholar
[63] Nelson C T, Winchester B, Zhang Y, Kim S-J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X Q 2011 Nano Lett. 11 828
Google Scholar
[64] McGilly L J, Gregg J M 2011 Nano Lett. 11 4490
Google Scholar
[65] Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81
Google Scholar
[66] Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868
Google Scholar
[67] Li Y, Jin Y, Lu X, Yang J C, Chu Y H, Huang F, Zhu J, Cheong S W 2017 NPJ Quantum Mater. 2 43
Google Scholar
[68] Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879
Google Scholar
[69] Lin S Z, Wang X, Kamiya Y, Chern G-W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970
Google Scholar
[70] Kutka R, Trebin H R, Kiemes M 1989 J. Phys. France 50 861
Google Scholar
[71] Naumov I, Fu H 2007 Phys. Rev. Lett. 98 077603
Google Scholar
[72] Naumov I, Bratkovsky A M 2008 Phys. Rev. Lett. 101 107601
Google Scholar
[73] Naumov I I, Fu H 2008 Phys. Rev. Lett. 101 197601
Google Scholar
[74] Prosandeev S, Ponomareva I, Naumov I, Kornev I, Bellaiche L 2008 J. Phys. Condens. Matter 20 193201
Google Scholar
[75] Chen D P, Zhang Y, Zhang X M, Lin L, Yan Z B, Gao X S, Liu J M 2017 J. Appl. Phys. 122 044103
Google Scholar
[76] Morelli A, Johann F, Burns S R, Douglas A, Gregg J M 2016 Nano Lett. 16 5228
Google Scholar
[77] Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219
Google Scholar
[78] Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919
Google Scholar
[79] Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359
Google Scholar
[80] Matzen S, Nesterov O, Rispens G, Heuver J A, Biegalski M, Christen H M, Noheda B 2014 Nat. Commun. 5 4415
Google Scholar
[81] Gruverman A, Alexe M, Meier D 2019 Nat. Commun. 10 1661
Google Scholar
[82] Geng W, Guo X, Zhu Y, Tang Y, Feng Y, Zou M, Wang Y, Han M, Ma J, Wu B, Hu W, Ma X 2018 ACS Nano 12 11098
Google Scholar
[83] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375
Google Scholar
[84] Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573
Google Scholar
[85] Sichuga D, Ren W, Prosandeev S, Bellaiche L 2010 Phys. Rev. Lett. 104 207603
Google Scholar
[86] Aguado-Puente P, Junquera J 2012 Phys. Rev. B 85 184105
Google Scholar
[87] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P 2008 Nature 452 732
Google Scholar
[88] Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542
Google Scholar
[89] Shafer P, García-Fernández P, Aguado-Puente P, Damodaran A R, Yadav A K, Nelson C T, Hsu S L, Wojdeł J C, Íñiguez J, Martin L W, Arenholz E, Junquera J, Ramesh R 2018 Proc. Natl. Acad. Sci. U.S.A. 115 915
Google Scholar
[90] Sun Y, Abid A Y, Tan C, Ren C, Li M, Li N, Chen P, Li Y, Zhang J, Zhong X, Wang J, Liao M, Liu K, Bai X, Zhou Y, Yu D, Gao P 2019 Sci. Adv. 5 eaav4355
Google Scholar
[91] García-Fernández P, Wojdeł J C, Íñiguez J, Junquera J 2016 Phys. Rev. B 93 195137
Google Scholar
[92] Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468
Google Scholar
[93] Zubko P, Wojdeł J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk’yanchuk I, Triscone J M, Íñiguez J 2016 Nature 534 524
Google Scholar
[94] Zubko P 2019 Nature 568 322
Google Scholar
[95] Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, Garcia-Fernandez P, Iniguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R, Martin L W 2017 Nat. Mater. 16 1003
Google Scholar
[96] Nelson C T, Hong Z, Yadav A K, Damodaran A R, Hsu S L, Clarkson J D, Chen L Q, Martin L W, Ramesh R 2018 Microsc. Microanal. 24 1638
Google Scholar
[97] Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377
Google Scholar
[98] Pereira Gonçalves M A, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J 2019 Sci. Adv. 5 eaau7023
Google Scholar
[99] Du K, Zhang M, Dai C, Zhou Z N, Xie Y W, Ren Z H, Tian H, Chen L Q, Van Tendeloo G, Zhang Z 2019 Nat. Commun. 10 4864
Google Scholar
[100] Hong Z, Chen L Q 2019 Acta Mater. 164 493
Google Scholar
[101] Je S G, Vallobra P, Srivastava T, Rojas-Sánchez J C, Pham T H, Hehn M, Malinowski G, Baraduc C, Auffret S, Gaudin G, Mangin S, Béa H, Boulle O 2018 Nano Lett. 18 7362
Google Scholar
-
图 1 磁性材料中典型自旋拓扑缺陷结构 (a) 畴壁结构[42]; (b) 流量闭合畴结构[42]; (c) 涡旋[43]; (d) 反涡旋[43]; (e) 中心发散型结构[43]; (f) 中心收敛型结构[43]; (g) 半子[43,70]; (h) 斯格明子[43,70]
Fig. 1. Typical spin topology defects in magnetic materials: (a) Domain wall[42]; (b) flux-closure pattern[42]; (c) vortex[43]; (d) anti-vortex[43]; (e) center-divergent pattern[43]; (f) center-convergent pattern[43]; (g) meron[43,70]; (h) skyrmion[43,70].
图 2 铁电纳米颗粒中典型的极性拓扑结构 (a) 超小纳米片中的极性涡旋结构[22,71]; (b) 纳米杆中的极性涡旋结构[22,71]; (c) 纳米点中的极性涡旋结构[74]; (d) BTO纳米岛中的极性涡旋[75]; (e) PZT纳米岛中的涡旋畴[28]; (f) BFO纳米岛中涡旋-反涡旋对结构[76,77]; (g) BFO纳米岛中的中心发散型畴结构[76-78]; (h) BTO单晶颗粒中的通量闭合畴[64,79]; (i), (j) BFO纳米岛中的可转换中心发散-收敛型畴结构及其导电特性[29-31]
Fig. 2. Typical polar topologies in ferroelectric materials: (a) Polar vortex in nanodisks[22,71]; (b) polar vortex in nanorods[22,71]; (c) polar vortex in nanodots[74]; (d) vortex in BTO nanoislands[75]; (e) vortex domain in PZT nanodots[28]; (f) anti-vortex domain in BFO films[76,77]; (g) center-divergent domain in BFO films[76-78]; (h) flux-closure pattern in BTO crystal[64,79]; (i), (j) center-divergent (convergent) domain in BFO nanoislands[29-31].
图 3 铁电材料中通量闭合型拓扑畴的可移动性 (a) 单晶片状PZNPT中自组装多级多畴通量闭合型拓扑畴[26]; (b) 通量闭合型拓扑畴中心在外加电场下移动、合并和分裂[27]
Fig. 3. Mobility of flux-closed topological domains in ferroelectric materials: (a) Bundles-like domain structures at the edges of the PZNPT single crystal lamella[26]; (b) approach, coalesce and separate of the vertices after delivery of a prepoling field pulse[27].
图 4 铁电薄膜中极性拓扑畴的导电性: PFM导电探针在超薄BFO铁电薄膜诱导的通量闭合型畴结构(a)及其中心的导电性(b)[65,66]; BFO铁电薄膜中通量闭合型与中心发散(收敛)型畴可逆转换(c)及其导电性差异(d)[24,68]
Fig. 4. Conductivity of polar topological domains in ferroelectric thin films. Creation (a) and conductivity (b) of the flux-closure domain in BFO films[65,66]; (c) flux- closure domain and center-divergent (convergent) domain in BiFeO3 films and (d) their conductivity[24,68].
图 5 铁电薄膜中极性拓扑畴的TEM观察 (a) PZT薄膜中通量闭合型拓扑畴PZT[34]; (b)超薄BFO薄膜中涡旋畴[82]; (c)超薄BFO中的通量闭合型拓扑畴[37]
Fig. 5. Observation of the polar topological domains in ferroelectric thin films: (a) Flux-closure domains in ferroelectric PZT[34]; (b) vortex domains in ferroelectric BFO ultrathin films[82]; (c) flux-closure domains in ferroelectric BFO ultrathin films[37].
图 6 铁电薄膜中极性泡泡畴 (a) PZT薄膜中极性泡泡畴; (b) 极性泡泡畴微结构; (c) 极性泡泡畴移动与合并[83] ; (d) PFM下极性泡泡畴擦与写[84]
Fig. 6. Observation of the polar bubble-like domains in ferroelectric thin films: (a) Polar bubble domains in PZT thin films; (b) structure of the bubble domains; (c) merging and coarsening of the polar bubble domains[83]; (d) erasuring and recreation of the polar bubble domains[84].
图 7 铁电超晶格(PTO/STO)中的拓扑畴结构 (a) PTO/STO超晶格中通量闭合型拓扑畴阵列[35]; (b) PTO/STO超晶格中极性涡旋拓扑畴阵列[39,90]; (c) PTO/STO超晶格中拓扑畴结构演化相图[40]; (d) PTO/STO超晶格中斯格明子拓扑畴结构[41]
Fig. 7. Polar topological domains in PTO/STO superlattices: (a) Flux-closure domain arrays in a PTO/STO superlattices on GdScO3 substrate[35]; (b) polar vortex domain arrays in PTO/STO superlattices on DSO substrate[39,90]; (c) a calculated phase diagram for PTOm/STOn illustrating the length scales within which different topological states can be stabilized[40]; (d) polar skyrmion bubbles in a PTO/STO superlattices on STO substrate[41].
图 8 铁电超晶格中的拓扑混合相结构及外场调控 (a) AFM和PFM显示铁电相a1/a2与涡旋相分布[95]; (b) TEM和(c)理论计算显示铁电相a1/a2与涡旋相共存[96]; PTO/STO超晶格中拓扑畴结构的(d)外电场、(e)温度和(f)光辐射的可逆调控[95,97]
Fig. 8. Topological mixed phase structure and field control in ferroelectric superlattice: (a) Lateral piezoresponse force studies revealing the distribution of a1/a2 and vortex phases[95]; (b) dark field TEM image showing ferroelectric vortices and a1/a2-domain coexistence[96]; (c) phase field model of the a1/a2-domain/vortex boundary[96]; (d) reversible electric-field control of ferroelectric and vortex phases[95,97]; (e) temperature-dependent synchrotron X-ray diffraction on reversible switching of ferroelectric and vortex phases[95,97]; (f) reversible sub-picosecond optical pulses control of ferroelectric mixture and supercrystal structure[95,97].
图 9 极性拓扑畴结构的外场调控 (a) 创建极性斯格明子的理论方法[98]; (b) 铁电复合材料中极性涡旋与斯格明子之间的拓扑相变[88]; (c) 铁电超晶格中极性涡旋与斯格明子之间拓扑相变的相场模拟[58]; (d) 铁电超晶格中极性涡旋原位外电场调控[99]
Fig. 9. Topological mixed phase structure and field control in ferroelectric superlattice: (a) Theoretical guidelines to create polar skyrmions[98]; (b) topoligical transition between polar vortex and skyrmion in ferroelectric nanocomposites[88]; (c) phase field model of the topoligical transition between polar vortex and skyrmion in ferroelectric PTO/STO superlattices[58]; (d) manipulating topological transformations of polar vortices in ferroelectric superlattices[99].
-
[1] Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119
Google Scholar
[2] Heron J T, Schlom D G, Ramesh R 2014 Appl. Phys. Rev. 1 021303
Google Scholar
[3] Scott J F, Hershkovitz A, Ivry Y, Lu H, Gruverman A, Gregg J M 2017 Appl. Phys. Rev. 4 041104
Google Scholar
[4] Scott J F 2016 Ferroelectrics 503 117
Google Scholar
[5] Scott J F, Gardner J 2018 Mater. Today 21 553
Google Scholar
[6] Das S, Ghosh A, McCarter M R, Hsu S L, Tang Y L, Damodaran A R, Ramesh R, Martin L W 2018 APL Mater. 6 100901
Google Scholar
[7] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203
Google Scholar
[8] Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257
Google Scholar
[9] Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014
Google Scholar
[10] Scott J F 2007 Science 315 954
Google Scholar
[11] Chiu C H, Huang C W, Hsieh Y H, Chen J Y, Chang C F, Chu Y H, Wu W W 2017 Nano Energy 34 103
Google Scholar
[12] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 4601
Google Scholar
[13] Waldrop M M 2016 Nature 530 144
Google Scholar
[14] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152
Google Scholar
[15] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915
Google Scholar
[16] Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
Google Scholar
[17] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S, Fert A 2009 Nat. Nanotechnol. 4 528
Google Scholar
[18] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839
Google Scholar
[19] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
Google Scholar
[20] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283
Google Scholar
[21] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, Parkin S S P 2017 Nature 548 561
Google Scholar
[22] Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737
Google Scholar
[23] Ivry Y, Chu D P, Scott J F, Durkan C 2010 Phys. Rev. Lett. 104 207602
Google Scholar
[24] McGilly L J, Schilling A, Gregg J M 2010 Nano Lett. 10 4200
Google Scholar
[25] McQuaid R G P, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404
Google Scholar
[26] Chang L W, Nagarajan V, Scott J F, Gregg J M 2013 Nano Lett. 13 2553
Google Scholar
[27] McQuaid R G P, Gruverman A, Scott J F, Gregg J M 2014 Nano Lett. 14 4230
Google Scholar
[28] Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127
Google Scholar
[29] Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J 2018 Nat. Nanotechnol. 13 947
Google Scholar
[30] Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403
Google Scholar
[31] Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29
Google Scholar
[32] Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412
Google Scholar
[33] Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557
Google Scholar
[34] Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420
Google Scholar
[35] Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547
Google Scholar
[36] Liu Y, Wang Y J, Zhu Y L, Lei C H, Tang Y L, Li S, Zhang S R, Li J, Ma X L 2017 Nano Lett. 17 7258
Google Scholar
[37] Li S, Zhu Y L, Wang Y J, Tang Y L, Liu Y, Zhang S R, Ma J Y, Ma X L 2017 Appl. Phys. Lett. 111 052901
Google Scholar
[38] Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484
Google Scholar
[39] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198
Google Scholar
[40] Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246
Google Scholar
[41] Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368
Google Scholar
[42] Kittel C 1946 Phys. Rev. 70 965
Google Scholar
[43] Mermin N D 1979 Rev. Mod. Phys. 51 591
Google Scholar
[44] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 8856
Google Scholar
[45] Kamionka T, Martens M, Chou K W, Curcic M, Drews A, Schütz G, Tyliszczak T, Stoll H, Van Waeyenberge B, Meier G 2010 Phys. Rev. Lett. 105 137204
Google Scholar
[46] Kuepper K, Buess M, Raabe J, Quitmann C, Fassbender J 2007 Phys. Rev. Lett. 99 167202
Google Scholar
[47] Krüger B, Drews A, Bolte M, Merkt U, Pfannkuche D, Meier G 2008 J. Appl. Phys. 103 07A501
Google Scholar
[48] Drews A, Krüger B, Meier G, Bohlens S, Bocklage L, Matsuyama T, Bolte M 2009 Appl. Phys. Lett. 94 062504
Google Scholar
[49] Gliga S, Yan M, Hertel R, Schneider C M 2008 Phys. Rev. B 77 060404
Google Scholar
[50] Shigeto K, Okuno T, Mibu K, Shinjo T, Ono T 2002 Appl. Phys. Lett. 80 4190
Google Scholar
[51] Martens M, Kamionka T, Drews A, Krüger B, Meier G 2012 J. Appl. Phys. 112 013917
Google Scholar
[52] Mironov V L, Ermolaeva O L, Gusev S A, Klimov A Y, Rogov V V, Gribkov B A, Udalov O G, Fraerman A A, Marsh R, Checkley C, Shaikhaidarov R, Petrashov V T 2010 Phys. Rev. B 81 094436
Google Scholar
[53] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
Google Scholar
[54] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[55] Du H, Zhao X, Rybakov F N, Borisov A B, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev N S, Zhang Y, Che R, Blügel S, Tian M 2018 Phys. Rev. Lett. 120 197203
Google Scholar
[56] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X, Wang W 2018 Nano Lett. 18 1274
Google Scholar
[57] Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887
Google Scholar
[58] Hong Z, Chen L Q 2018 Acta Mater. 152 155
Google Scholar
[59] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190
Google Scholar
[60] Tian G, Yang W, Chen D, Fan Z, Hou Z, Alexe M, Gao X 2019 National Sci. Rev. 6 684
Google Scholar
[61] Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104
Google Scholar
[62] Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601
Google Scholar
[63] Nelson C T, Winchester B, Zhang Y, Kim S-J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X Q 2011 Nano Lett. 11 828
Google Scholar
[64] McGilly L J, Gregg J M 2011 Nano Lett. 11 4490
Google Scholar
[65] Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81
Google Scholar
[66] Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868
Google Scholar
[67] Li Y, Jin Y, Lu X, Yang J C, Chu Y H, Huang F, Zhu J, Cheong S W 2017 NPJ Quantum Mater. 2 43
Google Scholar
[68] Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879
Google Scholar
[69] Lin S Z, Wang X, Kamiya Y, Chern G-W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970
Google Scholar
[70] Kutka R, Trebin H R, Kiemes M 1989 J. Phys. France 50 861
Google Scholar
[71] Naumov I, Fu H 2007 Phys. Rev. Lett. 98 077603
Google Scholar
[72] Naumov I, Bratkovsky A M 2008 Phys. Rev. Lett. 101 107601
Google Scholar
[73] Naumov I I, Fu H 2008 Phys. Rev. Lett. 101 197601
Google Scholar
[74] Prosandeev S, Ponomareva I, Naumov I, Kornev I, Bellaiche L 2008 J. Phys. Condens. Matter 20 193201
Google Scholar
[75] Chen D P, Zhang Y, Zhang X M, Lin L, Yan Z B, Gao X S, Liu J M 2017 J. Appl. Phys. 122 044103
Google Scholar
[76] Morelli A, Johann F, Burns S R, Douglas A, Gregg J M 2016 Nano Lett. 16 5228
Google Scholar
[77] Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219
Google Scholar
[78] Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919
Google Scholar
[79] Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359
Google Scholar
[80] Matzen S, Nesterov O, Rispens G, Heuver J A, Biegalski M, Christen H M, Noheda B 2014 Nat. Commun. 5 4415
Google Scholar
[81] Gruverman A, Alexe M, Meier D 2019 Nat. Commun. 10 1661
Google Scholar
[82] Geng W, Guo X, Zhu Y, Tang Y, Feng Y, Zou M, Wang Y, Han M, Ma J, Wu B, Hu W, Ma X 2018 ACS Nano 12 11098
Google Scholar
[83] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375
Google Scholar
[84] Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573
Google Scholar
[85] Sichuga D, Ren W, Prosandeev S, Bellaiche L 2010 Phys. Rev. Lett. 104 207603
Google Scholar
[86] Aguado-Puente P, Junquera J 2012 Phys. Rev. B 85 184105
Google Scholar
[87] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P 2008 Nature 452 732
Google Scholar
[88] Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542
Google Scholar
[89] Shafer P, García-Fernández P, Aguado-Puente P, Damodaran A R, Yadav A K, Nelson C T, Hsu S L, Wojdeł J C, Íñiguez J, Martin L W, Arenholz E, Junquera J, Ramesh R 2018 Proc. Natl. Acad. Sci. U.S.A. 115 915
Google Scholar
[90] Sun Y, Abid A Y, Tan C, Ren C, Li M, Li N, Chen P, Li Y, Zhang J, Zhong X, Wang J, Liao M, Liu K, Bai X, Zhou Y, Yu D, Gao P 2019 Sci. Adv. 5 eaav4355
Google Scholar
[91] García-Fernández P, Wojdeł J C, Íñiguez J, Junquera J 2016 Phys. Rev. B 93 195137
Google Scholar
[92] Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468
Google Scholar
[93] Zubko P, Wojdeł J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk’yanchuk I, Triscone J M, Íñiguez J 2016 Nature 534 524
Google Scholar
[94] Zubko P 2019 Nature 568 322
Google Scholar
[95] Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, Garcia-Fernandez P, Iniguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R, Martin L W 2017 Nat. Mater. 16 1003
Google Scholar
[96] Nelson C T, Hong Z, Yadav A K, Damodaran A R, Hsu S L, Clarkson J D, Chen L Q, Martin L W, Ramesh R 2018 Microsc. Microanal. 24 1638
Google Scholar
[97] Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377
Google Scholar
[98] Pereira Gonçalves M A, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J 2019 Sci. Adv. 5 eaau7023
Google Scholar
[99] Du K, Zhang M, Dai C, Zhou Z N, Xie Y W, Ren Z H, Tian H, Chen L Q, Van Tendeloo G, Zhang Z 2019 Nat. Commun. 10 4864
Google Scholar
[100] Hong Z, Chen L Q 2019 Acta Mater. 164 493
Google Scholar
[101] Je S G, Vallobra P, Srivastava T, Rojas-Sánchez J C, Pham T H, Hehn M, Malinowski G, Baraduc C, Auffret S, Gaudin G, Mangin S, Béa H, Boulle O 2018 Nano Lett. 18 7362
Google Scholar
计量
- 文章访问数: 19100
- PDF下载量: 1379
- 被引次数: 0