搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电材料中的极性拓扑结构

谭丛兵 钟向丽 王金斌

引用本文:
Citation:

铁电材料中的极性拓扑结构

谭丛兵, 钟向丽, 王金斌

Polar topological structures in ferroelectric materials

Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin
PDF
HTML
导出引用
  • 调控磁性材料中的自旋拓扑结构(流量闭合型、涡旋、半子(meron)、斯格明子(skyrmion)等自旋组态)可以改进材料的磁性和电磁性能, 因而引起了学术界的广泛关注. 最近研究表明, 在尺寸效应、界面耦合及其相互作用、外延应变等作用下, 铁电材料中也会出现自发的极性拓扑畴结构, 同时表现出新的铁电相结构和丰富的物理性能. 本文总结了铁电纳米结构、铁电薄膜和铁电超晶格中的极性拓扑畴结构类型及其形成机理, 分析了这些极性拓扑结构与铁电、压电、介电、光电性能之间的关联, 并分别讨论了铁电材料中极性拓扑结构的整体拓扑相变调控和单个极性拓扑结构的外场调控, 最后展望了极性拓扑结构未来的可能研究方向.
    Spin topologies, including flow-closure, vortex, meron, skyrmion and other spin configurations, are usually found in magnetic materials. The emergence of the topological structures will trigger a number of intriguing functionalities and physical properties. Recent studies have shown that the trival domain structures can be transformed into polar topological domain structures under certain boundary conditions, such as size-confining, interfacial coupling, and epitaxial strain. In this paper, we review the observations of polar topologies and their formation mechanism in ferroelectric nanoparticles, thin films, and superlattice films, and focus on the intriguing properties, including ferroelectric, piezoelectric, dielectric, and photoelectric performances, which arise from the formation of polar topologies. We also review the highlights of recent studies of the manipulations and evolutions of polar topologies under the external field loading in ferroelectric materials. Finally, the future research directions of polar topological structure and potential application directions are proposed.
      通信作者: 王金斌, jbwang@xtu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11875229)
      Corresponding author: Wang Jin-Bin, jbwang@xtu.edu.cn
    [1]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [2]

    Heron J T, Schlom D G, Ramesh R 2014 Appl. Phys. Rev. 1 021303Google Scholar

    [3]

    Scott J F, Hershkovitz A, Ivry Y, Lu H, Gruverman A, Gregg J M 2017 Appl. Phys. Rev. 4 041104Google Scholar

    [4]

    Scott J F 2016 Ferroelectrics 503 117Google Scholar

    [5]

    Scott J F, Gardner J 2018 Mater. Today 21 553Google Scholar

    [6]

    Das S, Ghosh A, McCarter M R, Hsu S L, Tang Y L, Damodaran A R, Ramesh R, Martin L W 2018 APL Mater. 6 100901Google Scholar

    [7]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [8]

    Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257Google Scholar

    [9]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [10]

    Scott J F 2007 Science 315 954Google Scholar

    [11]

    Chiu C H, Huang C W, Hsieh Y H, Chen J Y, Chang C F, Chu Y H, Wu W W 2017 Nano Energy 34 103Google Scholar

    [12]

    Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 4601Google Scholar

    [13]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [14]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [15]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [16]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [17]

    Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S, Fert A 2009 Nat. Nanotechnol. 4 528Google Scholar

    [18]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839Google Scholar

    [19]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [20]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [21]

    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, Parkin S S P 2017 Nature 548 561Google Scholar

    [22]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [23]

    Ivry Y, Chu D P, Scott J F, Durkan C 2010 Phys. Rev. Lett. 104 207602Google Scholar

    [24]

    McGilly L J, Schilling A, Gregg J M 2010 Nano Lett. 10 4200Google Scholar

    [25]

    McQuaid R G P, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404Google Scholar

    [26]

    Chang L W, Nagarajan V, Scott J F, Gregg J M 2013 Nano Lett. 13 2553Google Scholar

    [27]

    McQuaid R G P, Gruverman A, Scott J F, Gregg J M 2014 Nano Lett. 14 4230Google Scholar

    [28]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [29]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J 2018 Nat. Nanotechnol. 13 947Google Scholar

    [30]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [31]

    Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29Google Scholar

    [32]

    Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412Google Scholar

    [33]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [34]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [35]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [36]

    Liu Y, Wang Y J, Zhu Y L, Lei C H, Tang Y L, Li S, Zhang S R, Li J, Ma X L 2017 Nano Lett. 17 7258Google Scholar

    [37]

    Li S, Zhu Y L, Wang Y J, Tang Y L, Liu Y, Zhang S R, Ma J Y, Ma X L 2017 Appl. Phys. Lett. 111 052901Google Scholar

    [38]

    Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484Google Scholar

    [39]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [40]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [41]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [42]

    Kittel C 1946 Phys. Rev. 70 965Google Scholar

    [43]

    Mermin N D 1979 Rev. Mod. Phys. 51 591Google Scholar

    [44]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 8856Google Scholar

    [45]

    Kamionka T, Martens M, Chou K W, Curcic M, Drews A, Schütz G, Tyliszczak T, Stoll H, Van Waeyenberge B, Meier G 2010 Phys. Rev. Lett. 105 137204Google Scholar

    [46]

    Kuepper K, Buess M, Raabe J, Quitmann C, Fassbender J 2007 Phys. Rev. Lett. 99 167202Google Scholar

    [47]

    Krüger B, Drews A, Bolte M, Merkt U, Pfannkuche D, Meier G 2008 J. Appl. Phys. 103 07A501Google Scholar

    [48]

    Drews A, Krüger B, Meier G, Bohlens S, Bocklage L, Matsuyama T, Bolte M 2009 Appl. Phys. Lett. 94 062504Google Scholar

    [49]

    Gliga S, Yan M, Hertel R, Schneider C M 2008 Phys. Rev. B 77 060404Google Scholar

    [50]

    Shigeto K, Okuno T, Mibu K, Shinjo T, Ono T 2002 Appl. Phys. Lett. 80 4190Google Scholar

    [51]

    Martens M, Kamionka T, Drews A, Krüger B, Meier G 2012 J. Appl. Phys. 112 013917Google Scholar

    [52]

    Mironov V L, Ermolaeva O L, Gusev S A, Klimov A Y, Rogov V V, Gribkov B A, Udalov O G, Fraerman A A, Marsh R, Checkley C, Shaikhaidarov R, Petrashov V T 2010 Phys. Rev. B 81 094436Google Scholar

    [53]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [54]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [55]

    Du H, Zhao X, Rybakov F N, Borisov A B, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev N S, Zhang Y, Che R, Blügel S, Tian M 2018 Phys. Rev. Lett. 120 197203Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X, Wang W 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887Google Scholar

    [58]

    Hong Z, Chen L Q 2018 Acta Mater. 152 155Google Scholar

    [59]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [60]

    Tian G, Yang W, Chen D, Fan Z, Hou Z, Alexe M, Gao X 2019 National Sci. Rev. 6 684Google Scholar

    [61]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [62]

    Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar

    [63]

    Nelson C T, Winchester B, Zhang Y, Kim S-J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X Q 2011 Nano Lett. 11 828Google Scholar

    [64]

    McGilly L J, Gregg J M 2011 Nano Lett. 11 4490Google Scholar

    [65]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [66]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [67]

    Li Y, Jin Y, Lu X, Yang J C, Chu Y H, Huang F, Zhu J, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [68]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [69]

    Lin S Z, Wang X, Kamiya Y, Chern G-W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970Google Scholar

    [70]

    Kutka R, Trebin H R, Kiemes M 1989 J. Phys. France 50 861Google Scholar

    [71]

    Naumov I, Fu H 2007 Phys. Rev. Lett. 98 077603Google Scholar

    [72]

    Naumov I, Bratkovsky A M 2008 Phys. Rev. Lett. 101 107601Google Scholar

    [73]

    Naumov I I, Fu H 2008 Phys. Rev. Lett. 101 197601Google Scholar

    [74]

    Prosandeev S, Ponomareva I, Naumov I, Kornev I, Bellaiche L 2008 J. Phys. Condens. Matter 20 193201Google Scholar

    [75]

    Chen D P, Zhang Y, Zhang X M, Lin L, Yan Z B, Gao X S, Liu J M 2017 J. Appl. Phys. 122 044103Google Scholar

    [76]

    Morelli A, Johann F, Burns S R, Douglas A, Gregg J M 2016 Nano Lett. 16 5228Google Scholar

    [77]

    Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [78]

    Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [79]

    Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359Google Scholar

    [80]

    Matzen S, Nesterov O, Rispens G, Heuver J A, Biegalski M, Christen H M, Noheda B 2014 Nat. Commun. 5 4415Google Scholar

    [81]

    Gruverman A, Alexe M, Meier D 2019 Nat. Commun. 10 1661Google Scholar

    [82]

    Geng W, Guo X, Zhu Y, Tang Y, Feng Y, Zou M, Wang Y, Han M, Ma J, Wu B, Hu W, Ma X 2018 ACS Nano 12 11098Google Scholar

    [83]

    Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [84]

    Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573Google Scholar

    [85]

    Sichuga D, Ren W, Prosandeev S, Bellaiche L 2010 Phys. Rev. Lett. 104 207603Google Scholar

    [86]

    Aguado-Puente P, Junquera J 2012 Phys. Rev. B 85 184105Google Scholar

    [87]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P 2008 Nature 452 732Google Scholar

    [88]

    Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542Google Scholar

    [89]

    Shafer P, García-Fernández P, Aguado-Puente P, Damodaran A R, Yadav A K, Nelson C T, Hsu S L, Wojdeł J C, Íñiguez J, Martin L W, Arenholz E, Junquera J, Ramesh R 2018 Proc. Natl. Acad. Sci. U.S.A. 115 915Google Scholar

    [90]

    Sun Y, Abid A Y, Tan C, Ren C, Li M, Li N, Chen P, Li Y, Zhang J, Zhong X, Wang J, Liao M, Liu K, Bai X, Zhou Y, Yu D, Gao P 2019 Sci. Adv. 5 eaav4355Google Scholar

    [91]

    García-Fernández P, Wojdeł J C, Íñiguez J, Junquera J 2016 Phys. Rev. B 93 195137Google Scholar

    [92]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [93]

    Zubko P, Wojdeł J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk’yanchuk I, Triscone J M, Íñiguez J 2016 Nature 534 524Google Scholar

    [94]

    Zubko P 2019 Nature 568 322Google Scholar

    [95]

    Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, Garcia-Fernandez P, Iniguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R, Martin L W 2017 Nat. Mater. 16 1003Google Scholar

    [96]

    Nelson C T, Hong Z, Yadav A K, Damodaran A R, Hsu S L, Clarkson J D, Chen L Q, Martin L W, Ramesh R 2018 Microsc. Microanal. 24 1638Google Scholar

    [97]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [98]

    Pereira Gonçalves M A, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J 2019 Sci. Adv. 5 eaau7023Google Scholar

    [99]

    Du K, Zhang M, Dai C, Zhou Z N, Xie Y W, Ren Z H, Tian H, Chen L Q, Van Tendeloo G, Zhang Z 2019 Nat. Commun. 10 4864Google Scholar

    [100]

    Hong Z, Chen L Q 2019 Acta Mater. 164 493Google Scholar

    [101]

    Je S G, Vallobra P, Srivastava T, Rojas-Sánchez J C, Pham T H, Hehn M, Malinowski G, Baraduc C, Auffret S, Gaudin G, Mangin S, Béa H, Boulle O 2018 Nano Lett. 18 7362Google Scholar

  • 图 1  磁性材料中典型自旋拓扑缺陷结构 (a) 畴壁结构[42]; (b) 流量闭合畴结构[42]; (c) 涡旋[43]; (d) 反涡旋[43]; (e) 中心发散型结构[43]; (f) 中心收敛型结构[43]; (g) 半子[43,70]; (h) 斯格明子[43,70]

    Fig. 1.  Typical spin topology defects in magnetic materials: (a) Domain wall[42]; (b) flux-closure pattern[42]; (c) vortex[43]; (d) anti-vortex[43]; (e) center-divergent pattern[43]; (f) center-convergent pattern[43]; (g) meron[43,70]; (h) skyrmion[43,70].

    图 2  铁电纳米颗粒中典型的极性拓扑结构 (a) 超小纳米片中的极性涡旋结构[22,71]; (b) 纳米杆中的极性涡旋结构[22,71]; (c) 纳米点中的极性涡旋结构[74]; (d) BTO纳米岛中的极性涡旋[75]; (e) PZT纳米岛中的涡旋畴[28]; (f) BFO纳米岛中涡旋-反涡旋对结构[76,77]; (g) BFO纳米岛中的中心发散型畴结构[76-78]; (h) BTO单晶颗粒中的通量闭合畴[64,79]; (i), (j) BFO纳米岛中的可转换中心发散-收敛型畴结构及其导电特性[29-31]

    Fig. 2.  Typical polar topologies in ferroelectric materials: (a) Polar vortex in nanodisks[22,71]; (b) polar vortex in nanorods[22,71]; (c) polar vortex in nanodots[74]; (d) vortex in BTO nanoislands[75]; (e) vortex domain in PZT nanodots[28]; (f) anti-vortex domain in BFO films[76,77]; (g) center-divergent domain in BFO films[76-78]; (h) flux-closure pattern in BTO crystal[64,79]; (i), (j) center-divergent (convergent) domain in BFO nanoislands[29-31].

    图 3  铁电材料中通量闭合型拓扑畴的可移动性 (a) 单晶片状PZNPT中自组装多级多畴通量闭合型拓扑畴[26]; (b) 通量闭合型拓扑畴中心在外加电场下移动、合并和分裂[27]

    Fig. 3.  Mobility of flux-closed topological domains in ferroelectric materials: (a) Bundles-like domain structures at the edges of the PZNPT single crystal lamella[26]; (b) approach, coalesce and separate of the vertices after delivery of a prepoling field pulse[27].

    图 4  铁电薄膜中极性拓扑畴的导电性: PFM导电探针在超薄BFO铁电薄膜诱导的通量闭合型畴结构(a)及其中心的导电性(b)[65,66]; BFO铁电薄膜中通量闭合型与中心发散(收敛)型畴可逆转换(c)及其导电性差异(d)[24,68]

    Fig. 4.  Conductivity of polar topological domains in ferroelectric thin films. Creation (a) and conductivity (b) of the flux-closure domain in BFO films[65,66]; (c) flux- closure domain and center-divergent (convergent) domain in BiFeO3 films and (d) their conductivity[24,68].

    图 5  铁电薄膜中极性拓扑畴的TEM观察 (a) PZT薄膜中通量闭合型拓扑畴PZT[34]; (b)超薄BFO薄膜中涡旋畴[82]; (c)超薄BFO中的通量闭合型拓扑畴[37]

    Fig. 5.  Observation of the polar topological domains in ferroelectric thin films: (a) Flux-closure domains in ferroelectric PZT[34]; (b) vortex domains in ferroelectric BFO ultrathin films[82]; (c) flux-closure domains in ferroelectric BFO ultrathin films[37].

    图 6  铁电薄膜中极性泡泡畴 (a) PZT薄膜中极性泡泡畴; (b) 极性泡泡畴微结构; (c) 极性泡泡畴移动与合并[83] ; (d) PFM下极性泡泡畴擦与写[84]

    Fig. 6.  Observation of the polar bubble-like domains in ferroelectric thin films: (a) Polar bubble domains in PZT thin films; (b) structure of the bubble domains; (c) merging and coarsening of the polar bubble domains[83]; (d) erasuring and recreation of the polar bubble domains[84].

    图 7  铁电超晶格(PTO/STO)中的拓扑畴结构 (a) PTO/STO超晶格中通量闭合型拓扑畴阵列[35]; (b) PTO/STO超晶格中极性涡旋拓扑畴阵列[39,90]; (c) PTO/STO超晶格中拓扑畴结构演化相图[40]; (d) PTO/STO超晶格中斯格明子拓扑畴结构[41]

    Fig. 7.  Polar topological domains in PTO/STO superlattices: (a) Flux-closure domain arrays in a PTO/STO superlattices on GdScO3 substrate[35]; (b) polar vortex domain arrays in PTO/STO superlattices on DSO substrate[39,90]; (c) a calculated phase diagram for PTOm/STOn illustrating the length scales within which different topological states can be stabilized[40]; (d) polar skyrmion bubbles in a PTO/STO superlattices on STO substrate[41].

    图 8  铁电超晶格中的拓扑混合相结构及外场调控 (a) AFM和PFM显示铁电相a1/a2与涡旋相分布[95]; (b) TEM和(c)理论计算显示铁电相a1/a2与涡旋相共存[96]; PTO/STO超晶格中拓扑畴结构的(d)外电场、(e)温度和(f)光辐射的可逆调控[95,97]

    Fig. 8.  Topological mixed phase structure and field control in ferroelectric superlattice: (a) Lateral piezoresponse force studies revealing the distribution of a1/a2 and vortex phases[95]; (b) dark field TEM image showing ferroelectric vortices and a1/a2-domain coexistence[96]; (c) phase field model of the a1/a2-domain/vortex boundary[96]; (d) reversible electric-field control of ferroelectric and vortex phases[95,97]; (e) temperature-dependent synchrotron X-ray diffraction on reversible switching of ferroelectric and vortex phases[95,97]; (f) reversible sub-picosecond optical pulses control of ferroelectric mixture and supercrystal structure[95,97].

    图 9  极性拓扑畴结构的外场调控 (a) 创建极性斯格明子的理论方法[98]; (b) 铁电复合材料中极性涡旋与斯格明子之间的拓扑相变[88]; (c) 铁电超晶格中极性涡旋与斯格明子之间拓扑相变的相场模拟[58]; (d) 铁电超晶格中极性涡旋原位外电场调控[99]

    Fig. 9.  Topological mixed phase structure and field control in ferroelectric superlattice: (a) Theoretical guidelines to create polar skyrmions[98]; (b) topoligical transition between polar vortex and skyrmion in ferroelectric nanocomposites[88]; (c) phase field model of the topoligical transition between polar vortex and skyrmion in ferroelectric PTO/STO superlattices[58]; (d) manipulating topological transformations of polar vortices in ferroelectric superlattices[99].

    Baidu
  • [1]

    Catalan G, Seidel J, Ramesh R, Scott J F 2012 Rev. Mod. Phys. 84 119Google Scholar

    [2]

    Heron J T, Schlom D G, Ramesh R 2014 Appl. Phys. Rev. 1 021303Google Scholar

    [3]

    Scott J F, Hershkovitz A, Ivry Y, Lu H, Gruverman A, Gregg J M 2017 Appl. Phys. Rev. 4 041104Google Scholar

    [4]

    Scott J F 2016 Ferroelectrics 503 117Google Scholar

    [5]

    Scott J F, Gardner J 2018 Mater. Today 21 553Google Scholar

    [6]

    Das S, Ghosh A, McCarter M R, Hsu S L, Tang Y L, Damodaran A R, Ramesh R, Martin L W 2018 APL Mater. 6 100901Google Scholar

    [7]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [8]

    Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257Google Scholar

    [9]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [10]

    Scott J F 2007 Science 315 954Google Scholar

    [11]

    Chiu C H, Huang C W, Hsieh Y H, Chen J Y, Chang C F, Chu Y H, Wu W W 2017 Nano Energy 34 103Google Scholar

    [12]

    Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U, Mikolajick T 2016 Adv. Funct. Mater. 26 4601Google Scholar

    [13]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [14]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [15]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [16]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [17]

    Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S, Fert A 2009 Nat. Nanotechnol. 4 528Google Scholar

    [18]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839Google Scholar

    [19]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [20]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [21]

    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C, Parkin S S P 2017 Nature 548 561Google Scholar

    [22]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [23]

    Ivry Y, Chu D P, Scott J F, Durkan C 2010 Phys. Rev. Lett. 104 207602Google Scholar

    [24]

    McGilly L J, Schilling A, Gregg J M 2010 Nano Lett. 10 4200Google Scholar

    [25]

    McQuaid R G P, McGilly L J, Sharma P, Gruverman A, Gregg J M 2011 Nat. Commun. 2 404Google Scholar

    [26]

    Chang L W, Nagarajan V, Scott J F, Gregg J M 2013 Nano Lett. 13 2553Google Scholar

    [27]

    McQuaid R G P, Gruverman A, Scott J F, Gregg J M 2014 Nano Lett. 14 4230Google Scholar

    [28]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [29]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J 2018 Nat. Nanotechnol. 13 947Google Scholar

    [30]

    Kim K E, Jeong S, Chu K, Lee J H, Kim G Y, Xue F, Koo T Y, Chen L Q, Choi S Y, Ramesh R, Yang C H 2018 Nat. Commun. 9 403Google Scholar

    [31]

    Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29Google Scholar

    [32]

    Kim K E, Kim Y J, Zhang Y, Xue F, Kim G Y, Song K, Choi S Y, Liu J M, Chen L Q, Yang C H 2018 Phys. Rev. Mater. 2 084412Google Scholar

    [33]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [34]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [35]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [36]

    Liu Y, Wang Y J, Zhu Y L, Lei C H, Tang Y L, Li S, Zhang S R, Li J, Ma X L 2017 Nano Lett. 17 7258Google Scholar

    [37]

    Li S, Zhu Y L, Wang Y J, Tang Y L, Liu Y, Zhang S R, Ma J Y, Ma X L 2017 Appl. Phys. Lett. 111 052901Google Scholar

    [38]

    Peters J J P, Apachitei G, Beanland R, Alexe M, Sanchez A M 2016 Nat. Commun. 7 13484Google Scholar

    [39]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [40]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [41]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [42]

    Kittel C 1946 Phys. Rev. 70 965Google Scholar

    [43]

    Mermin N D 1979 Rev. Mod. Phys. 51 591Google Scholar

    [44]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 8856Google Scholar

    [45]

    Kamionka T, Martens M, Chou K W, Curcic M, Drews A, Schütz G, Tyliszczak T, Stoll H, Van Waeyenberge B, Meier G 2010 Phys. Rev. Lett. 105 137204Google Scholar

    [46]

    Kuepper K, Buess M, Raabe J, Quitmann C, Fassbender J 2007 Phys. Rev. Lett. 99 167202Google Scholar

    [47]

    Krüger B, Drews A, Bolte M, Merkt U, Pfannkuche D, Meier G 2008 J. Appl. Phys. 103 07A501Google Scholar

    [48]

    Drews A, Krüger B, Meier G, Bohlens S, Bocklage L, Matsuyama T, Bolte M 2009 Appl. Phys. Lett. 94 062504Google Scholar

    [49]

    Gliga S, Yan M, Hertel R, Schneider C M 2008 Phys. Rev. B 77 060404Google Scholar

    [50]

    Shigeto K, Okuno T, Mibu K, Shinjo T, Ono T 2002 Appl. Phys. Lett. 80 4190Google Scholar

    [51]

    Martens M, Kamionka T, Drews A, Krüger B, Meier G 2012 J. Appl. Phys. 112 013917Google Scholar

    [52]

    Mironov V L, Ermolaeva O L, Gusev S A, Klimov A Y, Rogov V V, Gribkov B A, Udalov O G, Fraerman A A, Marsh R, Checkley C, Shaikhaidarov R, Petrashov V T 2010 Phys. Rev. B 81 094436Google Scholar

    [53]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [54]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [55]

    Du H, Zhao X, Rybakov F N, Borisov A B, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev N S, Zhang Y, Che R, Blügel S, Tian M 2018 Phys. Rev. Lett. 120 197203Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X, Wang W 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887Google Scholar

    [58]

    Hong Z, Chen L Q 2018 Acta Mater. 152 155Google Scholar

    [59]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [60]

    Tian G, Yang W, Chen D, Fan Z, Hou Z, Alexe M, Gao X 2019 National Sci. Rev. 6 684Google Scholar

    [61]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [62]

    Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar

    [63]

    Nelson C T, Winchester B, Zhang Y, Kim S-J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q, Pan X Q 2011 Nano Lett. 11 828Google Scholar

    [64]

    McGilly L J, Gregg J M 2011 Nano Lett. 11 4490Google Scholar

    [65]

    Balke N, Winchester B, Ren W, Chu Y H, Morozovska A N, Eliseev E A, Huijben M, Vasudevan R K, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen L Q, Kalinin S V 2012 Nat. Phys. 8 81Google Scholar

    [66]

    Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R, Kalinin S V 2009 Nat. Nanotechnol. 4 868Google Scholar

    [67]

    Li Y, Jin Y, Lu X, Yang J C, Chu Y H, Huang F, Zhu J, Cheong S W 2017 NPJ Quantum Mater. 2 43Google Scholar

    [68]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [69]

    Lin S Z, Wang X, Kamiya Y, Chern G-W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H, Batista C D, Cheong S W 2014 Nat. Phys. 10 970Google Scholar

    [70]

    Kutka R, Trebin H R, Kiemes M 1989 J. Phys. France 50 861Google Scholar

    [71]

    Naumov I, Fu H 2007 Phys. Rev. Lett. 98 077603Google Scholar

    [72]

    Naumov I, Bratkovsky A M 2008 Phys. Rev. Lett. 101 107601Google Scholar

    [73]

    Naumov I I, Fu H 2008 Phys. Rev. Lett. 101 197601Google Scholar

    [74]

    Prosandeev S, Ponomareva I, Naumov I, Kornev I, Bellaiche L 2008 J. Phys. Condens. Matter 20 193201Google Scholar

    [75]

    Chen D P, Zhang Y, Zhang X M, Lin L, Yan Z B, Gao X S, Liu J M 2017 J. Appl. Phys. 122 044103Google Scholar

    [76]

    Morelli A, Johann F, Burns S R, Douglas A, Gregg J M 2016 Nano Lett. 16 5228Google Scholar

    [77]

    Tian G, Chen D, Fan H, Li P, Fan Z, Qin M, Zeng M, Dai J, Gao X, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [78]

    Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, Yao J, Fan H, Song X, Chen D, Fan Z, Qin M, Zeng M, Zhang Z, Lu X, Hu S, Lei C, Zhu Q, Li J, Gao X, Liu J M 2017 Sci. Adv. 3 e1700919Google Scholar

    [79]

    Schilling A, Byrne D, Catalan G, Webber K G, Genenko Y A, Wu G S, Scott J F, Gregg J M 2009 Nano Lett. 9 3359Google Scholar

    [80]

    Matzen S, Nesterov O, Rispens G, Heuver J A, Biegalski M, Christen H M, Noheda B 2014 Nat. Commun. 5 4415Google Scholar

    [81]

    Gruverman A, Alexe M, Meier D 2019 Nat. Commun. 10 1661Google Scholar

    [82]

    Geng W, Guo X, Zhu Y, Tang Y, Feng Y, Zou M, Wang Y, Han M, Ma J, Wu B, Hu W, Ma X 2018 ACS Nano 12 11098Google Scholar

    [83]

    Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar

    [84]

    Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, Valanoor N 2019 Adv. Funct. Mater. 29 1808573Google Scholar

    [85]

    Sichuga D, Ren W, Prosandeev S, Bellaiche L 2010 Phys. Rev. Lett. 104 207603Google Scholar

    [86]

    Aguado-Puente P, Junquera J 2012 Phys. Rev. B 85 184105Google Scholar

    [87]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P 2008 Nature 452 732Google Scholar

    [88]

    Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542Google Scholar

    [89]

    Shafer P, García-Fernández P, Aguado-Puente P, Damodaran A R, Yadav A K, Nelson C T, Hsu S L, Wojdeł J C, Íñiguez J, Martin L W, Arenholz E, Junquera J, Ramesh R 2018 Proc. Natl. Acad. Sci. U.S.A. 115 915Google Scholar

    [90]

    Sun Y, Abid A Y, Tan C, Ren C, Li M, Li N, Chen P, Li Y, Zhang J, Zhong X, Wang J, Liao M, Liu K, Bai X, Zhou Y, Yu D, Gao P 2019 Sci. Adv. 5 eaav4355Google Scholar

    [91]

    García-Fernández P, Wojdeł J C, Íñiguez J, Junquera J 2016 Phys. Rev. B 93 195137Google Scholar

    [92]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [93]

    Zubko P, Wojdeł J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk’yanchuk I, Triscone J M, Íñiguez J 2016 Nature 534 524Google Scholar

    [94]

    Zubko P 2019 Nature 568 322Google Scholar

    [95]

    Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S L, McCarter M R, Park K D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, Garcia-Fernandez P, Iniguez J, Junquera J, Scholl A, Raschke M B, Chen L Q, Fong D D, Ramesh R, Martin L W 2017 Nat. Mater. 16 1003Google Scholar

    [96]

    Nelson C T, Hong Z, Yadav A K, Damodaran A R, Hsu S L, Clarkson J D, Chen L Q, Martin L W, Ramesh R 2018 Microsc. Microanal. 24 1638Google Scholar

    [97]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [98]

    Pereira Gonçalves M A, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J 2019 Sci. Adv. 5 eaau7023Google Scholar

    [99]

    Du K, Zhang M, Dai C, Zhou Z N, Xie Y W, Ren Z H, Tian H, Chen L Q, Van Tendeloo G, Zhang Z 2019 Nat. Commun. 10 4864Google Scholar

    [100]

    Hong Z, Chen L Q 2019 Acta Mater. 164 493Google Scholar

    [101]

    Je S G, Vallobra P, Srivastava T, Rojas-Sánchez J C, Pham T H, Hehn M, Malinowski G, Baraduc C, Auffret S, Gaudin G, Mangin S, Béa H, Boulle O 2018 Nano Lett. 18 7362Google Scholar

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究.  , 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能.  , 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [3] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性.  , 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [4] 杨华礼, 谢亚丽, 芦增星, 汪志明, 李润伟. 柔性磁性薄膜材料与器件研究进展.  , 2022, 71(9): 097503. doi: 10.7498/aps.71.20212354
    [5] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展.  , 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [6] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理.  , 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [7] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控.  , 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者.  , 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应.  , 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [10] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能.  , 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [11] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [12] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展.  , 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [13] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能.  , 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [14] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响.  , 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [15] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展.  , 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [16] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控.  , 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [17] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析.  , 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [18] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进.  , 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [19] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应.  , 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [20] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程.  , 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
计量
  • 文章访问数:  17617
  • PDF下载量:  1325
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-03-27
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map