Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field

Guo Ce Zhu Xi-Jing Wang Jian-Qing Ye Lin-Zheng

Citation:

Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field

Guo Ce, Zhu Xi-Jing, Wang Jian-Qing, Ye Lin-Zheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Acoustic cavitation bubble and its production extreme physics such as shockwaves and micro-jets on a solid wall have attracted great interest in the application of ultrasound (e.g., ultrasonic medical, ultrasonic cleaning, and ultrasonic machining). However, the prediction and control of micro-jets induced by ultrasonic field have been a very challenging work, due to the complicated mechanisms of collapsing of cavitation bubbles. In order to determine the interaction of micro-jet with the key parameters that influence the acoustic cavitation, the dynamics of bubble growth and collapse near a rigid boundary in water is investigated. Using the method of mirror image, a revised bubble dynamics equation in radial oscillation for a bubble near a plane rigid wall is derived from the double-bubble equation (the Doinikov equation). In the present equation, the gas inside the bubble is assumed to be the van der Waals gas, and the weak compressibility of the liquid is also assumed. The revised equation is then employed to simulate numerically the dynamical behaviors of a bubble, using the fourth-order Runge-Kutta method with variable step size adaptive control. Numerical simulations of the motion characteristics and collapse velocities of a bubble near a rigid boundary or a free boundary have been performed, under various conditions of initial bubble radius, spacing between the center of the bubble and the wall, acoustic pressure and ultrasonic frequency, in order to explain the effects of these key parameters on the acoustic cavitation intensity. It is shown that, compared with free boundary, the effect of rigid boundary on the bubble plays a significant role in suppressing the bubble oscillation. The intensity of bubble collapsing is reduced as the increase of the initial bubble radius and ultrasonic frequency, and increased by enlarging the spacing between the center of the bubble and the wall. There exists an optimal acoustic pressure (almost 3.5 times bigger than the ambient pressure), at which the collapse of a bubble near a rigid wall can be the most violent. Furthermore, the relationship between the collapse velocity of a bubble near a rigid boundary and its micro-jet is described. Results demonstrate that the velocity of micro-jet is dependent on that of bubble collapse, and it can be controlled by adjusting the velocity of bubble collapse indirectly. Calculation results of the micro-jet in this paper are compared with some numerical and experimental results given in the literature and good apparent trends between them are obtained. These results will give important implications for further understanding the dynamics of cavitation bubble on a solid wall induced by the ultrasonic field and its different requirements in engineering applications.
      Corresponding author: Guo Ce, guoce1027@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50975265, 51275490) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013011024-5).
    [1]

    Benjamin T B, Ellis A T 1966 Phil.Trans. R. Soc. Lond. A 260 221

    [2]

    Brujan E A, Matsumoto Y 2012 Microfluid Nanofluid 13 957

    [3]

    Brujan E A, Ikeda T, Matsumoto Y 2008 Exp. Thermal Fluid Sci. 32 1188

    [4]

    Vignoli L L, Barros A L, Thom R C, et al. 2013 Eur. J. Phys. 34 679

    [5]

    Merouani S, Hamdaoui O, Rezgui Y, et al. 2014 Ultrasonic 54 227

    [6]

    Wang Y C, Yao M C 2013 Ultrason. Sonochem. 20 565

    [7]

    Zarepour H, Yeo S H 2012 Int. J. Mach. Tools Manufact. 62 13

    [8]

    Tsuboi R, Kakinuma Y, Aoyama T, et al. 2012 Procedia CIRP 1 342

    [9]

    Grossmann S, Hilgenfeldt S, Lohse D 1997 J. Acoust. Soc. Am. 102 1223

    [10]

    Behnia S, Sojahrood A J, Soltanpoor W, et al. 2009 Ultrason. Sonochem. 16 502

    [11]

    Mahdi M, Ebrahimi R, Sham M 2011 Phys. Lett. A 375 2348

    [12]

    Doinikov A A, Zhao S K, Dayton P A 2009 Ultrasonics 49 195

    [13]

    Mettin R, Doinikov A A 2009 Appl. Acoust. 70 1330

    [14]

    Wang L, Tu J, Guo X S, et al. 2014 Chin. Phys. B 23 124302

    [15]

    Wang C H 2010 Ph. D. Dissertation (Xi'an: Shaanxi Normal University) (in Chinese) [王成会 2010 博士学位论文 (西安: 陕西师范大学)]

    [16]

    Doinikov A A 2001 Phys. Rev. E 64 026301

    [17]

    Wang C H, Cheng J C 2013 Sci. China: Phys. Mech. Astron. 56 1246

    [18]

    Ida M 2009 Phys. Rev. E 79 016307

    [19]

    Li F C, Cai J, Huai X L, Liu B 2013 J. Thermal Sci. 22 242

    [20]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin 60 104302 (in Chinese) [沈壮志, 林书玉 2011 60 104302]

    [21]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acustica 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [22]

    Hegedűs F, Klapcsik K 2015 Ultrason. Sonochem. 27 153

    [23]

    Chen H S, Li J, Chen D, Wang J D 2008 Wear 265 692

    [24]

    Chen X G, Yan J C, Gao F, et al. 2013 Ultrason. Sonochem. 20 144

    [25]

    Wang X F 2009 Cavitating and Supercavitating Flows Theory and Applications (Beijing: National Defence Industry Press) p29 (in Chinese) [王献孚 2009 空化泡和超空化泡流动理论及应用 (北京: 国防工业出版社) 第29页]

    [26]

    Blake J R, Gibson D C 1987 Ann. Rev. Fluid Mech. 19 99

    [27]

    Ohl C, Arora M, Ikink R, et al. 2006 Biophys. J. 91 4285

    [28]

    Tzanakis I, Hadfield M, Henshaw I 2011 Exp. Thermal Fluid Sci. 35 1544

    [29]

    Rayleigh L 1917 Phil. Mag. 34 94

  • [1]

    Benjamin T B, Ellis A T 1966 Phil.Trans. R. Soc. Lond. A 260 221

    [2]

    Brujan E A, Matsumoto Y 2012 Microfluid Nanofluid 13 957

    [3]

    Brujan E A, Ikeda T, Matsumoto Y 2008 Exp. Thermal Fluid Sci. 32 1188

    [4]

    Vignoli L L, Barros A L, Thom R C, et al. 2013 Eur. J. Phys. 34 679

    [5]

    Merouani S, Hamdaoui O, Rezgui Y, et al. 2014 Ultrasonic 54 227

    [6]

    Wang Y C, Yao M C 2013 Ultrason. Sonochem. 20 565

    [7]

    Zarepour H, Yeo S H 2012 Int. J. Mach. Tools Manufact. 62 13

    [8]

    Tsuboi R, Kakinuma Y, Aoyama T, et al. 2012 Procedia CIRP 1 342

    [9]

    Grossmann S, Hilgenfeldt S, Lohse D 1997 J. Acoust. Soc. Am. 102 1223

    [10]

    Behnia S, Sojahrood A J, Soltanpoor W, et al. 2009 Ultrason. Sonochem. 16 502

    [11]

    Mahdi M, Ebrahimi R, Sham M 2011 Phys. Lett. A 375 2348

    [12]

    Doinikov A A, Zhao S K, Dayton P A 2009 Ultrasonics 49 195

    [13]

    Mettin R, Doinikov A A 2009 Appl. Acoust. 70 1330

    [14]

    Wang L, Tu J, Guo X S, et al. 2014 Chin. Phys. B 23 124302

    [15]

    Wang C H 2010 Ph. D. Dissertation (Xi'an: Shaanxi Normal University) (in Chinese) [王成会 2010 博士学位论文 (西安: 陕西师范大学)]

    [16]

    Doinikov A A 2001 Phys. Rev. E 64 026301

    [17]

    Wang C H, Cheng J C 2013 Sci. China: Phys. Mech. Astron. 56 1246

    [18]

    Ida M 2009 Phys. Rev. E 79 016307

    [19]

    Li F C, Cai J, Huai X L, Liu B 2013 J. Thermal Sci. 22 242

    [20]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin 60 104302 (in Chinese) [沈壮志, 林书玉 2011 60 104302]

    [21]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acustica 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [22]

    Hegedűs F, Klapcsik K 2015 Ultrason. Sonochem. 27 153

    [23]

    Chen H S, Li J, Chen D, Wang J D 2008 Wear 265 692

    [24]

    Chen X G, Yan J C, Gao F, et al. 2013 Ultrason. Sonochem. 20 144

    [25]

    Wang X F 2009 Cavitating and Supercavitating Flows Theory and Applications (Beijing: National Defence Industry Press) p29 (in Chinese) [王献孚 2009 空化泡和超空化泡流动理论及应用 (北京: 国防工业出版社) 第29页]

    [26]

    Blake J R, Gibson D C 1987 Ann. Rev. Fluid Mech. 19 99

    [27]

    Ohl C, Arora M, Ikink R, et al. 2006 Biophys. J. 91 4285

    [28]

    Tzanakis I, Hadfield M, Henshaw I 2011 Exp. Thermal Fluid Sci. 35 1544

    [29]

    Rayleigh L 1917 Phil. Mag. 34 94

  • [1] Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [2] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [3] Bai Li-Chun, Sun Jin-Guang, Gao Yan-Dong. High-speed photography and image analysis of orbital motion of gas bubbles in ultrasonic field. Acta Physica Sinica, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [4] Wu Xue-You, Liang Jin-Fu. Translation and nonspherical oscillation of single bubble in ultrasound field. Acta Physica Sinica, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [5] Chen Hai-Xia, Lin Shu-Yu. Nonlinear propagation and anomalous absorption of ultrasound in liquid. Acta Physica Sinica, 2020, 69(13): 134301. doi: 10.7498/aps.69.20200425
    [6] Zhang Peng-Li, Lin Shu-Yu, Zhu Hua-Ze, Zhang Tao. Coupled resonance of bubbles in spherical cavitation clouds. Acta Physica Sinica, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [7] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [8] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [9] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [10] Wang Cheng-Hui, Mo Run-Yang, Hu Jing. Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound. Acta Physica Sinica, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [11] Liu Jun, Fu Zheng, Feng Qi-Jing, Wang Pei. Simulation study of the colliding bulge and surface micro-jet of metal flyers driven by detonation. Acta Physica Sinica, 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [12] Liang Jin-Fu, Chen Wei-Zhong, Shao Wei-Hang, Zhou Chao, Du Lian-Fang, Jin Li-Fang. Observation of encapsulated microbubble dynamics in ultrasound field. Acta Physica Sinica, 2013, 62(8): 084708. doi: 10.7498/aps.62.084708
    [13] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamic behavior of a cavitation bubble in acoustic field and electric field. Acta Physica Sinica, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [14] Wang Pei, Shao Jian-Li, Qin Cheng-Sen. Groove angle effect on micro-jet from shocked metal surface. Acta Physica Sinica, 2012, 61(23): 234701. doi: 10.7498/aps.61.234701
    [15] Shao Jian-Li, Wang Pei, He An-Min, Qin Cheng-Sen. Microscopic simulation on shock-induced micro-jet ejection from metal Al surface. Acta Physica Sinica, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [16] Zhan Xiang-Lin, Sun Fang, Zeng Zhou-Mo, Wang Xiao-Yuan, Jin Shi-Jiu. Acoustic field characteristics of ultrasonic linear phased array for an interface condition. Acta Physica Sinica, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] Shen Zhuang-Zhi, Lin Shu-Yu. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field. Acta Physica Sinica, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [18] Lu Yi-Gang, Wu Xiong-Hui. Computational analysis of double-bubble ultrasonic cavitation. Acta Physica Sinica, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [19] Zhang Peng-Li, Lin Shu-Yu. Two-bubble interaction under the sound field. Acta Physica Sinica, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [20] Wang Pei, Shao Jian-Li, Qin Cheng-Sen. Effect of loading-wave-front width on micro-jet from aluminum surface. Acta Physica Sinica, 2009, 58(2): 1064-1070. doi: 10.7498/aps.58.1064
Metrics
  • Abstract views:  7541
  • PDF Downloads:  389
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2015
  • Accepted Date:  31 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map