搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变与电场调控下二维异质结BAs/I-AsP的光电特性研究

郝军华 张德龙 王正佳 陈淑鑫 王玉芳

引用本文:
Citation:

应变与电场调控下二维异质结BAs/I-AsP的光电特性研究

郝军华, 张德龙, 王正佳, 陈淑鑫, 王玉芳

Study on the Optoelectronic Properties of Two-Dimensional Heterostructure BAs/I-AsP under Strain and Electric Field Modulation

HAO Junhua, ZHANG De-Long, WANG Zhengjia, CHEN Shuxin, WANG Yufang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 由两种或多种不同的二维材料组合而产生的层状范德华异质结构具有不同寻常的物理特性,可用于设计高效光电器件.本文使用基于密度泛函理论的第一性原理方法统地研究了由二维砷化硼(BAs)和蓝磷砷(I-AsP)单层形成的异质结的几何结构和光电性能.研究表明,四种垂直堆叠的BAs/I-AsP异质结构在基态下具有稳定的结构,且带隙在0.63~0.86 eV之间.相较于其组份的单层结构,该异质结构的光学吸收系数得到了提升,并且具备I型能带排列结构.另外,通过施加双轴应变和电场可显著地改变异质结构的带隙和能带类型.在双轴施加-10%~8%的拉伸或压缩应变下,带隙也随之增加,在拉伸大于8%时,带隙开始减小.电场在-0.5至0.5 V/Å范围内线性地影响带隙,随着电场增加带隙逐渐减小.双轴应变和电场都可使材料能带排列在I型和II型之间转变.同时,BAs/I-AsP异质结具有~13%的理论光电转换效率.可见,该二维异质结在光伏和光电领域具有广阔的应用前景.
    In recent years, two-dimensional (2D) materials have attracted considerable attention due to their outstanding optical and electronic properties and have shown great potential for applications in next-generation solar cells and other optoelectronic devices. In this paper, density functional theory (DFT) is applied to systematically study the electronic and optoelectronic properties of the heterojunction formed by 2D BAs and I-AsP monolayers, as well as the response of this heterojunction under biaxial strain and electric field. The calculation results show that, in the ground state, the four vertically stacked BAs/I-AsP heterostructures all have stable geometric structures, and their band gaps range from 0.63 to 0.86 eV. Compared with their constituent monolayers, the optical absorption coefficients of these heterostructures are increased (the absorption coefficient in the x-direction reaches 106 cm-1), and they can effectively separate the photogenerated electron-hole pairs. Among the four structures, the A1 structure exhibits the smallest interlayer spacing, the smallest binding energy, and the highest stability. It has a type-I band alignment, and this structure is a direct-band gap semiconductor with a band gap of 0.86 eV (PBE) and 1.26 eV (HSE06), which can be applied in the field of light-emitting diodes. The band gap and band type of the heterostructure can be effectively changed by applying biaxial strain and electric field. Under the application of biaxial tensile or compressive strain in the range of -10% to 8%, the band gap increases accordingly. When the tensile strain is greater than 8%, the band gap starts to decrease. When the biaxial strain ε ≤ -3% and ε > 8%, the heterojunction transitions from a type-I band alignment to a type-II band alignment. Under tensile strain, the absorption spectrum undergoes a red shift, while compressive strain leads to a blue shift of the absorption spectrum. Similarly, the externally applied electric field linearly affects the band gap of the BAs/I-AsP heterojunction in the range of -0.5 to 0.5 V/Å, and the band gap decreases as the electric field increases. When a positive electric field with E≥0.2 V/Å is applied, the band alignment of the heterojunction can also transition from type-I to type-II. The BAs/I-AsP heterojunction has strong absorption properties in the ultraviolet and visible light ranges. Based on the Scharber model, the theoretical power conversion efficiency (PCE) η of the BAs/I-AsP heterojunction is found to be greater than 13%, which is higher than that of 2D heterojunction materials such as Cs3Sb2I9/InSe (η=3.3%), SiPGaS/As (η=7.3%) and SnSe/SnS (η=9.1%). This further broadens the application scope of the BAs/I-AsP heterojunction, making it promising to play an important role in the field of photodetectors and solar cells.
  • [1]

    Kazem H A, Chaichan M T, Al-Waeli A H A, Sopian K 2024Sol. Energy 282 112946.

    [2]

    Qu W, Han D, Zhang J, Peng K, Gao Y, Huang S 2025Energy 316 134562.

    [3]

    Richter A, Hermle M, Glunz S W 2013IEEE J. Photovolt. 31184.

    [4]

    An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, Zhang Z, Wang B, Li S, Li D 2022Adv. Funct. Mater. 322110119.

    [5]

    Zhang J, Zhang H, Du Q, Xie X, Fang Y, Tang C, Chen G 2024Part. Part. Syst. Charact. 41 2300062.

    [6]

    Ullah S, Thonhauser T, Menezes M G 2024Appl. Mater. Today 41 102495.

    [7]

    Hao J, Zhang D L, Chen S, Xu J, Wang Z, Wang Y 2025Surf. Interfaces 58 105837.

    [8]

    Mao Y, Wu R, Ding D, He F 2022Computat. Mater. Sci. 202 110957.

    [9]

    Lv B, Lan Y, Wang X, Zhang Q, Hu Y, Jacobson A J, Broido D, Chen G, Ren Z, Chu C W 2015Appl. Phys. Lett. 106 074105.

    [10]

    Broido D A, Lindsay L, Reinecke T L 2013Phys. Rev. B 88214303.

    [11]

    Xie M Q, Zhang S L, Cai B, Zhu Z, Zou Y S, Zeng H B 2016Nanoscale 8 13407.

    [12]

    Xie M, Cai B, Meng Z, Gu Y, Zhang S, Liu X, Gong L, Li X, Zeng H 2020ACS Appl. Mater. Interfaces 126074.

    [13]

    Mak K F, Shan J 2016Nat. Photonics 10 216.

    [14]

    Deng X Q, Sheng R Q, Jing Q 2021RSC Adv. 11 21824.

    [15]

    Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen X, Zhang Y 2014Nat. Nanotechnol. 9 372.

    [16]

    Zhu Z, Tománek D 2014Phys. Rev. Lett. 112176802.

    [17]

    Song Y H, Muzaffar M U, Wang Q, Wang Y, Jia Y, Cui P, Zhang W, Wang X S, Zhang Z 2024 Nat. Commun. 15 1157.

    [18]

    Zhou D, Meng Q, Si N, Zhou X, Zhai S, Tang Q, Ji Q, Zhou M, Niu T, Fuchs H 2020ACS Nano 14 2385.

    [19]

    Cheng W, Yao X, Zhao L, Li C, Zheng Q, Han J, Wang S, Liu Y, Zhu J 2024Phys. Rev. B 109 064507.

    [20]

    Antonatos N, Mazánek V, Lazar P, Sturala J, Sofer Z 2020Nanoscale Adv. 2 1282.

    [21]

    Jamdagni P, Thakur A, Kumar A, Ahluwalia P K, Pandey R 2018Phys. Chem. Chem. Phys. 20 29939.

    [22]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015Angew. Chem., Int. Ed. Engl. 54 3112.

    [23]

    Zhong M, He J 2020J. Semicond. 41080402.

    [24]

    Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y, Abbas A, Liu B, Haiges R, Ott C, Nilges T, Watanabe K, Taniguchi T, Sinai O, Naveh D, Zhou C, Xia F 2018 Nano Lett. 18 3172.

    [25]

    Cai X, Chen Y, Sun B, Chen J, Wang H, Ni Y, Tao L, Wang H, Zhu S, Li X, Wang Y, Lv J, Feng X, Redfern S A T, Chen Z 2019 Nanoscale 11 8260.

    [26]

    Blöchl P E 1994Phys. Rev. B 50 17953.

    [27]

    Kresse G, Joubert D 1999Phys. Rev. B 59 1758.

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865.

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104.

    [30]

    Hao J, Zhang D L, Wang Z, Chen S, Xu J, Wang Y 2024Mater. Today Commun. 38 108423.

    [31]

    Monkhorst H J, Pack J D 1976Phys. Rev. B 13 5188.

    [32]

    Nose S 1984J. Chem. Phys. 81 511.

    [33]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. Condens. Mater. 21084204.

    [34]

    Bai H, Qian G, Liang Q, Feng Y, An M, Xie Q 2024Comput. Mater. Sci. 238 112948.

    [35]

    Cheng K, Xu J, Guo X, Guo S, Su Y 2023Phys. Chem. Chem. Phys. 25 17360.

    [36]

    Wu H Y, Yang K, Si Y, Huang W Q, Hu W, Huang G F 2019Phys. Status Solidi RRL 131800565.

    [37]

    Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023Acta Phys. Sin. 72 334(in Chinese) [孙婷钰,吴量,何贤娟,姜楠,周文哲,欧阳方平2023 72 334]

    [38]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082.

    [39]

    Wu M, Meng D 2024 Phys. B 680415847.

    [40]

    Behzad S, Chegel R 2023 Sci. Rep. 13 21339.

    [41]

    Lin L, Lou M, Li S, Cai X, Zhang Z, Tao H 2022Appl. Surf. Sci. 572 151209.

    [42]

    Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022Acta Phys. Sin. 71 288(in Chinese) [刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能2022 71288]

    [43]

    Xu Y H, Fan Z Q, Zhang Z H, Zhao T 2021 Appl. Surf. Sci. 547 149174.

    [44]

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024Acta Phys. Sin. 73137101(in Chinese) [熊祥杰,钟防,张资文,陈芳,罗婧澜,赵宇清,朱慧平,蒋绍龙2024 73137101]

    [45]

    Shahid I, Hu X, Ahmad I, Ali A, Shehzad N, Ahmad S, Zhou Z 2023Nanoscale 15 7302.

    [46]

    Zhang R, Zhou Z, Yao Q, Qi N, Chen Z 2021Phys. Chem. Chem. Phys. 233794.

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究.  , doi: 10.7498/aps.73.20231806
    [2] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能.  , doi: 10.7498/aps.73.20240434
    [3] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控.  , doi: 10.7498/aps.71.20210238
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究.  , doi: 10.7498/aps.70.20210145
    [5] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展.  , doi: 10.7498/aps.70.20210929
    [6] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , doi: 10.7498/aps.70.20201555
    [7] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究.  , doi: 10.7498/aps.68.20181833
    [8] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究.  , doi: 10.7498/aps.66.093101
    [9] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , doi: 10.7498/aps.65.048101
    [10] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控.  , doi: 10.7498/aps.65.044305
    [11] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , doi: 10.7498/aps.64.213101
    [12] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , doi: 10.7498/aps.63.023103
    [13] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , doi: 10.7498/aps.63.177304
    [14] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , doi: 10.7498/aps.63.113101
    [15] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , doi: 10.7498/aps.61.127201
    [16] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , doi: 10.7498/aps.59.6955
    [17] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究.  , doi: 10.7498/aps.59.7736
    [18] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , doi: 10.7498/aps.58.3331
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , doi: 10.7498/aps.55.3157
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  66
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-28

/

返回文章
返回
Baidu
map