-
The polarization switching (PS) characteristics of vertical cavity surface emitting lasers(VCSELs) have received sustained attention for the past years. With the development of manufacturing technology, the performances of 1550 nm VCSELs have been improved, however the researches on the PS of 1550 nm VCSELs are relatively inadequate for the PS characteristics in the long-wavelength VCSELs may have wide application prospects in optical information processing and optical communications. In this paper, based on the extended spin-flip model (SFM), we theoretically investigate the PS with low power consumption induced by optical feedback in long-wavelength VCSELs. Results show that the PS, which is failed to realize in free-running long-wavelength VCSELs, can be achieved by introducing a moderate-strength polarization-rotation optical feedback. By comparing two different linear dispersion effects, some interesting phenomena have been found. For weak linear dispersion, the PS is relatively easy to realize for a low injection current level, and the range of feedback strength used to control the PS is wide. However, for strong dispersion effect, the PS cannot be obtained all the time since two mode-coexisting zones will appear, and the value of injection current where the PS happens is relatively high. Meanwhile, as observed in short-wavelength VCSELs, the polarization mode hopping and multiple PS have also been found in long-wavelength VCSELs, indicating that the physics nature thet induces the PS is similar for both long and short wavelength VCSELs. In addition, because the PS in long-wavelength VCSEL is more difficult to realize as compared with that in short-wavelength VCSELs, reasonable analyses and explanations may be as follows: since the linear dispersion effect in 1550 nm-VCSEL is much stronger than that of short wavelength VCSEL, the frequency difference between the two linear polarization modes is up to 60 GHz (or 0.48 nm), thus leading to the decrease of the correlation between two linear polarization modes. As a result, it is relatively difficult to obtain the PS phenomenon at low injection current level in long-wavelength VCSEL; while using suitable polarization-rotated optical feedback can partially compensate the deficiency of this correlation. We believe that the results obtained in this work will be helpful in investigation of low power consumption for all optical buffers by using long-wavelength VCSELs.
-
Keywords:
- long-wavelength vertical-cavity surface-emitting lasers /
- polarization-rotated optical feedback /
- polarization switching
[1] Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205
[2] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[3] Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160
[4] Iga K 2000 IEEE J. Select. Top. Quantum Electron. 6 1201
[5] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[6] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[7] Regalado J M, Miguel M S, Abraham N B, Prati F 1996 Opt. Lett. 21 351
[8] Balle S, Tolkachova E, Miguel M S, Tredicce J R, Regalado J M, Gahl A 1999 Opt. Lett. 24 1121
[9] Koyama F 2006 J. Light. Technol. 24 4502
[10] Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158
[11] Masoller C, Abraham N B 1999 Appl. Phys. Lett. 74 1078
[12] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276
[13] Zhang W L, Pan W, Luo B, Wang M Y, Zou X H 2008 IEEE J. Sel. Top. Quantum Electron. 14 889
[14] Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2010 J. Opt. Soc. Am. B 27 2512
[15] Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210
[16] Kaplan A B 2007 Ph. D. Dissertation (South Hadley: Mount Holyoke College)
[17] Hitoshi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1254
[18] Lee S H, Jung H W, Kim K H, Lee M H, Yoo B S, Roh J, Shore K A 2010 IEEE Photon. Tech. Lett. 22 1759
[19] Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833
[20] Katayama T, Ooi T, Kawaguchi H 2009 IEEE J. Quantum Electron. 45 1495
[21] Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92
[22] Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[23] Wang X F, Li J 2014 Acta Phys. Sin. 63 014203 (in Chinese) [王小发, 李骏 2014 63 014203]
[24] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620
[25] Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2011 Opt. Lett. 36 310
[26] Valle A, Pesquera L, Shore K A 1998 IEEE Photon. Technol. Lett. 10 639
[27] Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mgret P, Blondel M 2003 Opt. Lett. 28 1543
-
[1] Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205
[2] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[3] Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160
[4] Iga K 2000 IEEE J. Select. Top. Quantum Electron. 6 1201
[5] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[6] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[7] Regalado J M, Miguel M S, Abraham N B, Prati F 1996 Opt. Lett. 21 351
[8] Balle S, Tolkachova E, Miguel M S, Tredicce J R, Regalado J M, Gahl A 1999 Opt. Lett. 24 1121
[9] Koyama F 2006 J. Light. Technol. 24 4502
[10] Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158
[11] Masoller C, Abraham N B 1999 Appl. Phys. Lett. 74 1078
[12] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276
[13] Zhang W L, Pan W, Luo B, Wang M Y, Zou X H 2008 IEEE J. Sel. Top. Quantum Electron. 14 889
[14] Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2010 J. Opt. Soc. Am. B 27 2512
[15] Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210
[16] Kaplan A B 2007 Ph. D. Dissertation (South Hadley: Mount Holyoke College)
[17] Hitoshi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1254
[18] Lee S H, Jung H W, Kim K H, Lee M H, Yoo B S, Roh J, Shore K A 2010 IEEE Photon. Tech. Lett. 22 1759
[19] Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833
[20] Katayama T, Ooi T, Kawaguchi H 2009 IEEE J. Quantum Electron. 45 1495
[21] Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92
[22] Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[23] Wang X F, Li J 2014 Acta Phys. Sin. 63 014203 (in Chinese) [王小发, 李骏 2014 63 014203]
[24] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620
[25] Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2011 Opt. Lett. 36 310
[26] Valle A, Pesquera L, Shore K A 1998 IEEE Photon. Technol. Lett. 10 639
[27] Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mgret P, Blondel M 2003 Opt. Lett. 28 1543
Catalog
Metrics
- Abstract views: 6175
- PDF Downloads: 243
- Cited By: 0