搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控

钟东洲 吴正茂

引用本文:
Citation:

电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控

钟东洲, 吴正茂

Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation

Zhong Dong-Zhou, Wu Zheng-Mao
PDF
导出引用
  • 基于周期性极化铌酸锂晶体的线性电光效应耦合波理论,数值研究了电光调制对外部光反馈垂直腔表面发射激光器(VCSEL)输出矢量混沌偏振模的操控.研究结果表明,VCSEL输出的偏振度随着电光晶体的长度或施加于电光晶体的外电场强度成周期性转换,控制一定的施加外电场强度和晶体的长度,激光器的不同参数下引起初始混沌偏振态都可以转换为其他任意混沌偏振态.特别是合理选择一定的施加外电场强度或晶体长度,VCSEL输出的任意混沌偏振模可以转换为完全一致的两线性混沌偏振模(x和ŷ偏振),即两线性混沌偏振模的能量能够达到稳定和完全均衡.
    Based on the wave coupling theory of linear electrooptic effect in quasi-phase- matched periodical poled LiNbO3(PPLN), the control of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation is numerically investigated. The investigation results show that the polarization state of VCSEL output switching periodically with the applied external electronic field or the length of the crystal. The original chaotic polarized state of its output caused by different parameters of VCSEL can be conversed into the other arbitrary chaotic polarized state. In particular, by controlling a certain applied external electronic field or the length of the crystal, any chaotic polarization model of VCSEL output can be conversed into two complete identical linear chaotic polarization model(x and ŷ polarization). In the case, this indicates that the energy of two linear chaotic polarization model can be steadily realized balanced status.
    • 基金项目: 五邑大学青年基金项目(批准号: 3072208), 广东省高校优秀青年创新人才培育项目(批准号: 30717003)和国家自然科学基金项目(批准号: 60978003)资助的课题.
    • Funds: Project supported by the Youth Grant of Wuyi University(Grant No. 3072208), the National Natural Science Founding of China(Grant No. 60978003), and the Grant of the Cultivating Projects of Outstanding Young Creative Talents of the Universities of Guangdong Province, China(Grant No. 30717003).
    [1]

    Zhong D, Xia G, Wu U 2004 J. Opt. Adv. Mtaer. 6 1234

    [2]

    Argyris A, Kanakids D, Bogris A, Syvrids D 2004 IEEE J. Quantum Electron. 10 541

    [3]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [4]

    Yan S L 2007Chin. Phys. 16 3271

    [5]

    Pau J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514

    [6]

    Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169(in Chinese)[吴加贵, 吴正茂, 林晓冬, 张毅, 钟东洲, 夏光琼 2005 54 4169]

    [7]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [8]

    Sciamanna M, Masoller C, Abraham N B, Rogister F, Megret P, Blondel M 2003 J. Opt. Soc. Am. B 20 37

    [9]

    Besnard P, Chares M L, Stephan G M 1999 J. Opt. Soc. Am. B 16 1059

    [10]

    Zhong D Z, Cao W H, Wu Z M, Xia G Q 2008 Acta Phys. Sin. 57 1548(in Chinese)[钟东洲, 曹文 吴正茂, 夏光琼 2008 57 1548]

    [11]

    Masoller C, Abraham N B 1999 Phys. Rev. A 59 3021

    [12]

    Giudici M, Balle S, Ackemann T, Barland S 1999 J. Opt. Soc. Am. B 16 2114

    [13]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669(in Chinese)[王小发, 夏光琼, 吴正茂 2009 58 4669]

    [14]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480(in Chinese)[杨炳星, 夏光琼, 吴正茂 2009 58 1480]

    [15]

    Huang X B, Xia G Q, Wu Z M 2010 Acta Phys. Sin. 59 3066(in Chinese)[黄雪兵, 夏光琼, 吴正茂 2010 59 3066]

    [16]

    Hong Y, Spencer P S, Rees P, Shore K A 2002 IEEE J. Quantum Electron. 38 274

    [17]

    Zhong D Z, Xia G Q, Wang F, Wu Z M 2007 Acta Phys. Sin. 56 3279(in Chinese)[钟东洲, 夏光琼, 王飞, 吴正茂 2007 56 3279]

    [18]

    Zhong D Z, Xia G Q, Wu Z M, Jia X H 2008 Opt. Commun. 281 1689

    [19]

    Zhong D Z, Wu Z M 2009 Opt. Commun. 282 1631

    [20]

    Hong Y, Won M, Shore K A 2004 Opt. Lett. 29 1215

    [21]

    Ju R, Spencer P S, Shore K A 2005 IEEE J. Quantum Electron. 41 1461

    [22]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [23]

    Du L H, Wu Z M, Deng T, Xia G Q 2010 Opt. Adv. Mater. Rapid Commun. 4 624

    [24]

    Du L H, Wu Z M, Deng T, Xia G Q 2010 J. Opt. Adv. Mater. 12 171

    [25]

    She W L, Lee W K 2001 Opt. Commun. 195 303

    [26]

    Feng D, Ming N B, Hong J F, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607

    [27]

    Arbore M A, Galvanauska A, Harter D, Chou M H, Fejer M M 1997 Opt. Lett. 22 1341

    [28]

    Zheng G L, Wang H C, She W L 2006 Opt. Express 14 5535

    [29]

    Hobden M V, Warner J 1966 Phys. Lett. 22 243

  • [1]

    Zhong D, Xia G, Wu U 2004 J. Opt. Adv. Mtaer. 6 1234

    [2]

    Argyris A, Kanakids D, Bogris A, Syvrids D 2004 IEEE J. Quantum Electron. 10 541

    [3]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [4]

    Yan S L 2007Chin. Phys. 16 3271

    [5]

    Pau J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514

    [6]

    Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169(in Chinese)[吴加贵, 吴正茂, 林晓冬, 张毅, 钟东洲, 夏光琼 2005 54 4169]

    [7]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [8]

    Sciamanna M, Masoller C, Abraham N B, Rogister F, Megret P, Blondel M 2003 J. Opt. Soc. Am. B 20 37

    [9]

    Besnard P, Chares M L, Stephan G M 1999 J. Opt. Soc. Am. B 16 1059

    [10]

    Zhong D Z, Cao W H, Wu Z M, Xia G Q 2008 Acta Phys. Sin. 57 1548(in Chinese)[钟东洲, 曹文 吴正茂, 夏光琼 2008 57 1548]

    [11]

    Masoller C, Abraham N B 1999 Phys. Rev. A 59 3021

    [12]

    Giudici M, Balle S, Ackemann T, Barland S 1999 J. Opt. Soc. Am. B 16 2114

    [13]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669(in Chinese)[王小发, 夏光琼, 吴正茂 2009 58 4669]

    [14]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480(in Chinese)[杨炳星, 夏光琼, 吴正茂 2009 58 1480]

    [15]

    Huang X B, Xia G Q, Wu Z M 2010 Acta Phys. Sin. 59 3066(in Chinese)[黄雪兵, 夏光琼, 吴正茂 2010 59 3066]

    [16]

    Hong Y, Spencer P S, Rees P, Shore K A 2002 IEEE J. Quantum Electron. 38 274

    [17]

    Zhong D Z, Xia G Q, Wang F, Wu Z M 2007 Acta Phys. Sin. 56 3279(in Chinese)[钟东洲, 夏光琼, 王飞, 吴正茂 2007 56 3279]

    [18]

    Zhong D Z, Xia G Q, Wu Z M, Jia X H 2008 Opt. Commun. 281 1689

    [19]

    Zhong D Z, Wu Z M 2009 Opt. Commun. 282 1631

    [20]

    Hong Y, Won M, Shore K A 2004 Opt. Lett. 29 1215

    [21]

    Ju R, Spencer P S, Shore K A 2005 IEEE J. Quantum Electron. 41 1461

    [22]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [23]

    Du L H, Wu Z M, Deng T, Xia G Q 2010 Opt. Adv. Mater. Rapid Commun. 4 624

    [24]

    Du L H, Wu Z M, Deng T, Xia G Q 2010 J. Opt. Adv. Mater. 12 171

    [25]

    She W L, Lee W K 2001 Opt. Commun. 195 303

    [26]

    Feng D, Ming N B, Hong J F, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607

    [27]

    Arbore M A, Galvanauska A, Harter D, Chou M H, Fejer M M 1997 Opt. Lett. 22 1341

    [28]

    Zheng G L, Wang H C, She W L 2006 Opt. Express 14 5535

    [29]

    Hobden M V, Warner J 1966 Phys. Lett. 22 243

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器.  , 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论.  , 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [3] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究.  , 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [4] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析.  , 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [5] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究.  , 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [6] 陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼. 基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波.  , 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [7] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿.  , 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [8] 杨炳星, 夏光琼, 林晓东, 吴正茂. 光脉冲注入下VCSEL的偏振开关特性.  , 2009, 58(3): 1480-1483. doi: 10.7498/aps.58.1480
    [9] 张开春, 刘盛纲. 周期极化铌酸锂中光整流THz波辐射.  , 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [10] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究.  , 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [11] 尹 鑫, 王继扬. 旋光性与电光效应交互作用及其对旋光晶体电光Q开关的影响.  , 2004, 53(10): 3565-3570. doi: 10.7498/aps.53.3565
    [12] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合.  , 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [13] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究.  , 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [14] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析.  , 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [15] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析.  , 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [16] 吴仲康, 张家民, 刘思敏, 王华馥, 张光寅, 吕永彬, 徐良瑛, 徐玉恒. 掺铁铌酸锂(LiNbO3:Fe)的光致损伤.  , 1987, 36(1): 24-28. doi: 10.7498/aps.36.24
    [17] 王业宁, 朱劲松, 谈云鹏. 铌酸锂晶体中多畴层带区倍频光的研究.  , 1980, 29(12): 1629-1635. doi: 10.7498/aps.29.1629
    [18] 朱镛, 张道范. 铌酸锶钠锂单晶电光、热电、介电和压电性能.  , 1979, 28(2): 234-239. doi: 10.7498/aps.28.234
    [19] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算.  , 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅰ)——利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数.  , 1976, 25(2): 146-161. doi: 10.7498/aps.25.146
计量
  • 文章访问数:  6917
  • PDF下载量:  701
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-30
  • 修回日期:  2011-05-13
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map